N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29915530
PubMed Central
PMC5994540
DOI
10.3389/fnmol.2018.00188
Knihovny.cz E-zdroje
- Klíčová slova
- endoplasmic reticulum, excitatory synapse, glutamate receptor, glycan, ion channel, mammalian neuron,
- Publikační typ
- časopisecké články MeSH
N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors are regulated by N-glycosylation; however, limited information is available regarding the role of N-glycosylation in GluN3A-containing NMDARs. Using a combination of microscopy, biochemistry, and electrophysiology in mammalian cell lines and rat hippocampal neurons, we found that two asparagine residues (N203 and N368) in the GluN1 subunit and three asparagine residues (N145, N264 and N275) in the GluN3A subunit are required for surface delivery of GluN3A-containing NMDARs. Furthermore, deglycosylation and lectin-based analysis revealed that GluN3A subunits contain extensively modified N-glycan structures, including hybrid/complex forms of N-glycans. We also found (either using a panel of inhibitors or by studying human fibroblasts derived from patients with a congenital disorder of glycosylation) that N-glycan remodeling is not required for the surface delivery of GluN3A-containing NMDARs. Finally, we found that the surface mobility of GluN3A-containing NMDARs in hippocampal neurons is increased following incubation with 1-deoxymannojirimycin (DMM, an inhibitor of the formation of the hybrid/complex forms of N-glycans) and decreased in the presence of specific lectins. These findings provide new insight regarding the mechanisms by which neurons can regulate NMDAR trafficking and function.
Zobrazit více v PubMed
Chazot P. L., Cik M., Stephenson F. A. (1995). An investigation into the role of N-glycosylation in the functional expression of a recombinant heteromeric NMDA receptor. Mol. Membr. Biol. 12, 331–337. 10.3109/09687689509072435 PubMed DOI
Chowdhury D., Marco S., Brooks I. M., Zandueta A., Rao Y., Haucke V., et al. . (2013). Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J. Neurosci. 33, 4151–4164. 10.1523/JNEUROSCI.2721-12.2013 PubMed DOI PMC
Clark R. A., Gurd J. W., Bissoon N., Tricaud N., Molnar E., Zamze S. E., et al. . (1998). Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at the synapse. J. Neurochem. 70, 2594–2605. 10.1046/j.1471-4159.1998.70062594.x PubMed DOI
Coleman S. K., Moykkynen T., Cai C. L., von Ossowski L., Kuismanen E., Korpi E. R., et al. . (2006). Isoform-specific early trafficking of AMPA receptor flip and flop variants. J. Neurosci. 26, 11220–11229. 10.1523/jneurosci.2301-06.2006 PubMed DOI PMC
Copits B. A., Vernon C. G., Sakai R., Swanson G. T. (2014). Modulation of ionotropic glutamate receptor function by vertebrate galectins. J. Physiol. 592, 2079–2096. 10.1113/jphysiol.2013.269597 PubMed DOI PMC
Croset A., Delafosse L., Gaudry J. P., Arod C., Glez L., Losberger C., et al. . (2012). Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J. Biotechnol. 161, 336–348. 10.1016/j.jbiotec.2012.06.038 PubMed DOI
Cummings R. D., Liu F. T., Vasta G. R. (2017). “Galectins,” in Essentials of Glycobiology [Internet], eds Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Darvill A. G., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., 3rd Edn (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; ), 2015–2017. PubMed
Cummings K. A., Popescu G. K. (2016). Protons potentiate GluN1/GluN3A currents by attenuating their desensitisation. Sci. Rep. 6:23344. 10.1038/srep23344 PubMed DOI PMC
Everts I., Villmann C., Hollmann M. (1997). N-Glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol. Pharmacol. 52, 861–873. 10.1124/mol.52.5.861 PubMed DOI
Ferreira J. S., Papouin T., Ladépêche L., Yao A., Langlais V. C., Bouchet D., et al. . (2017). Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. Elife 6:e25492. 10.7554/eLife.25492 PubMed DOI PMC
Fiuza M., González-González I., Pérez-Otaño I. (2013). GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling. Proc. Natl. Acad. Sci. U S A 110, 20807–20812. 10.1073/pnas.1312211110 PubMed DOI PMC
Freeze H. H. (2006). Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551. 10.1038/nrg1894 PubMed DOI
Freeze H. H., Eklund E. A., Ng B. G., Patterson M. C. (2012). Neurology of inherited glycosylation disorders. Lancet Neurol. 11, 453–466. 10.1016/s1474-4422(12)70040-6 PubMed DOI PMC
Freeze H. H., Eklund E. A., Ng B. G., Patterson M. C. (2015). Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci. 38, 105–125. 10.1146/annurev-neuro-071714-034019 PubMed DOI PMC
Frischknecht R., Heine M., Perrais D., Seidenbecher C. I., Choquet D., Gundelfinger E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904. 10.1038/nn.2338 PubMed DOI
Gerges N. Z., Backos D. S., Esteban J. A. (2004). Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. J. Biol. Chem. 279, 43870–43878. 10.1074/jbc.M404982200 PubMed DOI
Greger I. H., Khatri L., Kong X., Ziff E. B. (2003). AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40, 763–774. 10.1016/s0896-6273(03)00668-8 PubMed DOI
Gross V., Tran-Thi T. A., Schwarz R. T., Elbein A. D., Decker K., Heinrich P. C. (1986). Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat α 1-proteinase inhibitor and α 1-acid glycoprotein. Biochem. J. 236, 853–860. 10.1042/bj2360853 PubMed DOI PMC
Haeuptle M. A., Hennet T. (2009). Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum. Mutat. 30, 1628–1641. 10.1002/humu.21126 PubMed DOI
Hanus C., Geptin H., Tushev G., Garg S., Alvarez-Castelao B., Sambandan S., et al. . (2016). Unconventional secretory processing diversifies neuronal ion channel properties. Elife 5:e20609. 10.7554/elife.20609 PubMed DOI PMC
Herreman A., Van Gassen G., Bentahir M., Nyabi O., Craessaerts K., Mueller U., et al. . (2003). γ-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J. Cell Sci. 116, 1127–1136. 10.1242/jcs.00292 PubMed DOI
Höck M., Wegleiter K., Ralser E., Kiechl-Kohlendorfer U., Scholl-Burgi S., Fauth C., et al. . (2015). ALG8-CDG: novel patients and review of the literature. Orphanet J. Rare Dis. 10:73. 10.1186/s13023-015-0289-7 PubMed DOI PMC
Honzik T., Ondruskova N., Tesarova M., Vesela K., Magner M., Hennet T., et al. (2013). Next generation sequencing in diagnostics of two Czech CDG1x patients: case reports of patient diagnosed with DPAGT1-CDG and SRD5A3-CDG. J. Inherit. Metab. Dis. 36, S234–S234. 10.1007/s10545-013-9633-z DOI
Horak M., Petralia R. S., Kaniakova M., Sans N. (2014). ER to synapse trafficking of NMDA receptors. Front. Cell. Neurosci. 8:394. 10.3389/fncel.2014.00394 PubMed DOI PMC
Huh K. H., Wenthold R. J. (1999). Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J. Biol. Chem. 274, 151–157. 10.1074/jbc.274.1.151 PubMed DOI
Kaniakova M., Krausova B., Vyklicky V., Korinek M., Lichnerova K., Vyklicky L., et al. . (2012a). Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J. Biol. Chem. 287, 26423–26434. 10.1074/jbc.M112.339085 PubMed DOI PMC
Kaniakova M., Lichnerova K., Vyklicky L., Horak M. (2012b). Single amino acid residue in the M4 domain of GluN1 subunit regulates the surface delivery of NMDA receptors. J. Neurochem. 123, 385–395. 10.1111/jnc.12002 PubMed DOI
Kaniakova M., Lichnerova K., Skrenkova K., Vyklicky L., Horak M. (2016). Biochemical and electrophysiological characterization of N-glycans on NMDA receptor subunits. J. Neurochem. 138, 546–556. 10.1111/jnc.13679 PubMed DOI
Kehoe L. A., Bellone C., De Roo M., Zandueta A., Dey P. N., Pérez-Otaño I., et al. . (2014). GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J. Neurosci. 34, 9213–9221. 10.1523/JNEUROSCI.5183-13.2014 PubMed DOI PMC
Kehoe L. A., Bernardinelli Y., Muller D. (2013). GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013:145387. 10.1155/2013/145387 PubMed DOI PMC
Kenny A. V., Cousins S. L., Pinho L., Stephenson F. A. (2009). The integrity of the glycine co-agonist binding site of N-methyl-D-aspartate receptors is a functional quality control checkpoint for cell surface delivery. J. Biol. Chem. 284, 324–333. 10.1074/jbc.M804023200 PubMed DOI
Kusumi A., Sako Y., Yamamoto M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040. 10.1016/s0006-3495(93)81253-0 PubMed DOI PMC
Lichnerova K., Kaniakova M., Park S. P., Skrenkova K., Wang Y. X., Petralia R. S., et al. . (2015). Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-D-aspartate (NMDA) receptors from the endoplasmic reticulum. J. Biol. Chem. 290, 18379–18390. 10.1074/jbc.M115.656546 PubMed DOI PMC
Liu C., Rozmyslowicz T., Stwora-Wojczyk M., Wojczyk B., Spitalnik S. L. (2000). Posttranslational modifications of the amyloid precursor protein: glycosylation. Methods Mol. Med. 32, 169–190. 10.1385/1-59259-195-7:169 PubMed DOI
Macauley M. S., Crocker P. R., Paulson J. C. (2014). Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666. 10.1038/nri3737 PubMed DOI PMC
Mah S. J., Cornell E., Mitchell N. A., Fleck M. W. (2005). Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J. Neurosci. 25, 2215–2225. 10.1523/JNEUROSCI.4573-04.2005 PubMed DOI PMC
Medzihradszky K. F., Kaasik K., Chalkley R. J. (2015). Tissue-specific glycosylation at the glycopeptide level. Mol. Cell. Proteomics 14, 2103–2110. 10.1074/mcp.m115.050393 PubMed DOI PMC
Mikasova L., Xiong H., Kerkhofs A., Bouchet D., Krugers H. J., Groc L. (2017). Stress hormone rapidly tunes synaptic NMDA receptor through membrane dynamics and mineralocorticoid signalling. Sci. Rep. 7:8053. 10.1038/s41598-017-08695-3 PubMed DOI PMC
Mikhaylova M., Bera S., Kobler O., Frischknecht R., Kreutz M. R. (2016). A dendritic golgi satellite between ERGIC and retromer. Cell Rep. 14, 189–199. 10.1016/j.celrep.2015.12.024 PubMed DOI
Moremen K. W., Tiemeyer M., Nairn A. V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13, 448–462. 10.1038/nrm3383 PubMed DOI PMC
Ondruskova N., Honzik T., Vondrackova A., Tesarova M., Zeman J., Hansikova H. (2014). Glycogen storage disease-like phenotype with central nervous system involvement in a PGM1-CDG patient. Neuro Endocrinol. Lett. 35, 137–141. PubMed
Pachernegg S., Strutz-Seebohm N., Hollmann M. (2012). GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 35, 240–249. 10.1016/j.tins.2011.11.010 PubMed DOI
Pérez-Otaño I., Luján R., Tavalin S. J., Plomann M., Modregger J., Liu X. B., et al. . (2006). Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat. Neurosci. 9, 611–621. 10.1038/nn1680 PubMed DOI PMC
Pérez-Otaño I., Schulteis C. T., Contractor A., Lipton S. A., Trimmer J. S., Sucher N. J., et al. . (2001). Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J. Neurosci. 21, 1228–1237. 10.1523/JNEUROSCI.21-04-01228.2001 PubMed DOI PMC
Prybylowski K., Fu Z., Losi G., Hawkins L. M., Luo J., Chang K., et al. . (2002). Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci. 22, 8902–8910. 10.1523/JNEUROSCI.22-20-08902.2002 PubMed DOI PMC
Qiu S., Zhang X. M., Cao J. Y., Yang W., Yan Y. G., Shan L., et al. . (2009). An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-Methyl-D-aspartate receptors. J. Biol. Chem. 284, 20285–20298. 10.1074/jbc.m109.004960 PubMed DOI PMC
Sanz-Clemente A., Nicoll R. A., Roche K. W. (2012). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 9, 62–75. 10.1177/1073858411435129 PubMed DOI PMC
Sbalzarini I. F., Koumoutsakos P. (2005). Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195. 10.1016/j.jsb.2005.06.002 PubMed DOI
Smothers C. T., Woodward J. J. (2009). Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. J. Pharmacol. Exp. Ther. 331, 975–984. 10.1124/jpet.109.158493 PubMed DOI PMC
Standley S., Tocco G., Wagle N., Baudry M. (1998). High- and low-affinity α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA) binding sites represent immature and mature forms of AMPA receptors and are composed of differentially glycosylated subunits. J. Neurochem. 70, 2434–2445. 10.1046/j.1471-4159.1998.70062434.x PubMed DOI
Tokhtaeva E., Sachs G., Vagin O. (2009). Assembly with the Na,K-ATPase α1 subunit is required for export of β1 and β2 subunits from the endoplasmic reticulum. Biochemistry 48, 11421–11431. 10.1021/bi901438z PubMed DOI PMC
Torre E. R., Steward O. (1996). Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 5967–5978. 10.1523/JNEUROSCI.16-19-05967.1996 PubMed DOI PMC
Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. . (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496. 10.1124/pr.109.002451 PubMed DOI PMC
Triller A., Choquet D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374. 10.1016/j.neuron.2008.06.022 PubMed DOI
Tucholski J., Simmons M. S., Pinner A. L., Haroutunian V., Mccullumsmith R. E., Meador-Woodruff J. H. (2013). Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr. Res. 146, 177–183. 10.1016/j.schres.2013.01.031 PubMed DOI PMC
Vagin O., Kraut J. A., Sachs G. (2009). Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Renal Physiol. 296, F459–F469. 10.1152/ajprenal.90340.2008 PubMed DOI PMC
Varki A., Cummings R. D., Esko J. D. (2009). Essentials of Glycobiology. 2nd Edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. PubMed
Vesela K., Honzik T., Hansikova H., Haeuptle M. A., Semberova J., Stranak Z., et al. . (2009). A new case of ALG8 deficiency (CDG Ih). J. Inherit. Metab. Dis. 32, 259–264. 10.1007/s10545-009-1203-z PubMed DOI
Vierbuchen T., Ostermeier A., Pang Z. P., Kokubu Y., Südhof T. C., Wernig M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041. 10.1038/nature08797 PubMed DOI PMC
Wong H. K., Liu X. B., Matos M. F., Chan S. F., Pérez-Otaño I., Boysen M., et al. . (2002). Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 450, 303–317. 10.1002/cne.10314 PubMed DOI
Yang E. H., Rode J., Howlader M. A., Eckermann M., Santos J. T., Hernandez Armada D., et al. . (2017). Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors. PLoS One 12:e0184378. 10.1371/journal.pone.0184378 PubMed DOI PMC
Yavin E., Richter-Landsberg C., Duksin D., Yavin Z. (1984). Tunicamycin blocks neuritogenesis and glucosamine labeling of gangliosides in developing cerebral neuron cultures. Proc. Natl. Acad. Sci. U S A 81, 5638–5642. 10.1073/pnas.81.18.5638 PubMed DOI PMC
Yuan T., Bellone C. (2013). Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors. Eur. J. Pharmacol. 719, 107–111. 10.1016/j.ejphar.2013.04.056 PubMed DOI
Zagyansky Y., Edidin M. (1976). Lateral diffusion of concanavalin A receptors in the plasma membrane of mouse fibroblasts. Biochim. Biophys. Acta 433, 209–214. 10.1016/0005-2736(76)90188-7 PubMed DOI