Conformational basis of subtype-specific allosteric control of NMDA receptor gating
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 GM117051
NIGMS NIH HHS - United States
R01 NS119826
NINDS NIH HHS - United States
PubMed
38370786
PubMed Central
PMC10871359
DOI
10.1101/2024.02.10.579740
PII: 2024.02.10.579740
Knihovny.cz E-zdroje
- Klíčová slova
- FRET, GluN1, GluN2, Grin1, Grin2, NMDA receptors, allostery,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
N-methyl-D-aspartate receptors are ionotropic glutamate receptors that are integral to synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties, which support their individual physiological roles in the nervous system. To understand the conformational basis of this diversity, we assessed the conformation of the common GluN1 subunit in receptors with different GluN2 subunits using single-molecule fluorescence resonance energy transfer (smFRET). We established smFRET sensors in the ligand binding domain and modulatory amino-terminal domain to study an apo-like state and partially liganded activation intermediates, which have been elusive to structural analysis. Our results demonstrate a strong, subtype-specific influence of apo and glutamate-bound GluN2 subunits on GluN1 rearrangements, suggesting a conformational basis for the highly divergent levels of receptor activity, desensitization and agonist potency. Chimeric analysis reveals structural determinants that contribute to the subtype differences. Our study provides a framework for understanding GluN2-dependent functional properties and could open new avenues for subtype-specific modulation.
Current address DIANA Biotechnologies a s Průmyslová 596 252 50 Vestec Czech Republic
Department of Molecular and Cell Biology University of California Berkeley California 94720 USA
Helen Wills Neuroscience Institute University of California Berkeley California 94720 USA
Weill Neurohub University of California Berkeley California 94720 USA
Zobrazit více v PubMed
Reiner A., and Levitz J. (2018). Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 98, 1080–1098. 10.1016/j.neuron.2018.05.018. PubMed DOI PMC
Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., et al. (2021). Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 73, 298–487. 10.1124/pharmrev.120.000131. PubMed DOI PMC
Lee C.-H., Lü W., Michel J.C., Goehring A., Du J., Song X., and Gouaux E. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197. 10.1038/nature13548. PubMed DOI PMC
Karakas E., and Furukawa H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997. 10.1126/science.1251915. PubMed DOI PMC
Kleckner N., and Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837. 10.1126/science.2841759. PubMed DOI
Benveniste M., and Mayer M.L. (1991). Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560–573. 10.1016/S0006-3495(91)82272-X. PubMed DOI PMC
Clements J.D., and Westbrook G.L. (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-d-aspartate receptor. Neuron 7, 605–613. 10.1016/0896-6273(91)90373-8. PubMed DOI
Popescu G., and Auerbach A. (2004). The NMDA Receptor Gating Machine: Lessons from Single Channels. The Neuroscientist 10, 192–198. 10.1177/1073858404263483. PubMed DOI
Erreger K., Dravid S.M., Banke T.G., Wyllie D.J.A., and Traynelis S.F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358. 10.1113/jphysiol.2004.080028. PubMed DOI PMC
Amin J.B., Gochman A., He M., Certain N., and Wollmuth L.P. (2021). NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Neuron 109, 488–501.e4. 10.1016/j.neuron.2020.11.009. PubMed DOI PMC
Paoletti P. (2011). Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33, 1351–1365. 10.1111/j.1460-9568.2011.07628.x. PubMed DOI
Paoletti P., Bellone C., and Zhou Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400. 10.1038/nrn3504. PubMed DOI
Cull-Candy S., Brickley S., and Farrant M. (2001). NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335. 10.1016/S0959-4388(00)00215-4. PubMed DOI
Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., and Dingledine R. (2010). Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 62, 405–496. 10.1124/pr.109.002451. PubMed DOI PMC
Misra C., Brickley S.G., Wyllie D.J.A., and Cull-Candy S.G. (2000). Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. J. Physiol. 525, 299–305. 10.1111/j.1469-7793.2000.t01-1-00299.x. PubMed DOI PMC
Regalado M.P., Villarroel A., and Lerma J. (2001). Intersubunit Cooperativity in the NMDA Receptor. Neuron 32, 1085–1096. 10.1016/S0896-6273(01)00539-6. PubMed DOI
Vance K.M., Simorowski N., Traynelis S.F., and Furukawa H. (2011). Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat. Commun. 2, 294. 10.1038/ncomms1295. PubMed DOI PMC
Vicini S., Wang J.F., Li J.H., Zhu W.J., Wang Y.H., Luo J.H., Wolfe B.B., and Grayson D.R. (1998). Functional and Pharmacological Differences Between RecombinantN-Methyl-d-Aspartate Receptors. J. Neurophysiol. 79, 555–566. 10.1152/jn.1998.79.2.555. PubMed DOI
Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M., et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36–41. 10.1038/358036a0. PubMed DOI
Ikeda K., Nagasawa M., Mori H., ArakP K., and Sakimura K. (1992). Cloning and expression of the ε4 subunit of the NMDA receptor channel. FEBS Lett. 313. PubMed
Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and Seeburg P.H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221. 10.1126/science.256.5060.1217. PubMed DOI
Erreger K., Geballe M.T., Kristensen A., Chen P.E., Hansen K.B., Lee C.J., Yuan H., Le P., Lyuboslavsky P.N., Micale N., et al. (2007). Subunit-Specific Agonist Activity at NR2A-, NR2B-, NR2C-, and NR2D-Containing N -Methyl-d-aspartate Glutamate Receptors. Mol. Pharmacol. 72, 907–920. 10.1124/mol.107.037333. PubMed DOI
Kuryatov A., Laube B., Betz H., and Kuhse J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12, 1291–1300. 10.1016/0896-6273(94)90445-6. PubMed DOI
Chen P.E., Geballe M.T., Katz E., Erreger K., Livesey M.R., O’Toole K.K., Le P., Lee C.J., Snyder J.P., Traynelis S.F., et al. (2008). Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586, 227–245. 10.1113/jphysiol.2007.143172. PubMed DOI PMC
Banke T.G., and Traynelis S.F. (2003). Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6, 144–152. 10.1038/nn1000. PubMed DOI
Schorge S., Elenes S., and Colquhoun D. (2005). Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J. Physiol. 569, 395–418. 10.1113/jphysiol.2005.095349. PubMed DOI PMC
Auerbach A., and Zhou Y. (2005). Gating Reaction Mechanisms for NMDA Receptor Channels. J. Neurosci. 25, 7914–7923. 10.1523/JNEUROSCI.1471-05.2005. PubMed DOI PMC
Vance K.M., Hansen K.B., and Traynelis S.F. (2013). Modal gating of GluN1/GluN2D NMDA receptors. Neuropharmacology 71, 184–190. 10.1016/j.neuropharm.2013.03.018. PubMed DOI PMC
Gibb A.J., Ogden K.K., McDaniel M.J., Vance K.M., Kell S.A., Butch C., Burger P., Liotta D.C., and Traynelis S.F. (2018). A structurally derived model of subunit-dependent NMDA receptor function. J. Physiol. 596, 4057–4089. 10.1113/JP276093. PubMed DOI PMC
Gielen M., Retchless B.S., Mony L., Johnson J.W., and Paoletti P. (2009). Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707. 10.1038/nature07993. PubMed DOI PMC
Yuan H., Hansen K.B., Vance K.M., Ogden K.K., and Traynelis S.F. (2009). Control of NMDA Receptor Function by the NR2 Subunit Amino-Terminal Domain. J. Neurosci. 29, 12045–12058. 10.1523/JNEUROSCI.1365-09.2009. PubMed DOI PMC
Madry C., Mesic I., Betz H., and Laube B. (2007). The N-Terminal Domains of both NR1 and NR2 Subunits Determine Allosteric Zn 2+ Inhibition and Glycine Affinity of N -Methyl-d-aspartate Receptors. Mol. Pharmacol. 72, 1535–1544. 10.1124/mol.107.040071. PubMed DOI
Tajima N., Karakas E., Grant T., Simorowski N., Diaz-Avalos R., Grigorieff N., and Furukawa H. (2016). Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68. 10.1038/nature17679. PubMed DOI PMC
Jalali-Yazdi F., Chowdhury S., Yoshioka C., and Gouaux E. (2018). Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 175, 1520–1532.e15. 10.1016/j.cell.2018.10.043. PubMed DOI PMC
Zhang J.-B., Chang S., Xu P., Miao M., Wu H., Zhang Y., Zhang T., Wang H., Zhang J., Xie C., et al. (2018). Structural Basis of the Proton Sensitivity of Human GluN1-GluN2 A NMDA Receptors. Cell Rep. 25, 3582–3590.e4. 10.1016/j.celrep.2018.11.071. PubMed DOI
Chou T.-H., Tajima N., Romero-Hernandez A., and Furukawa H. (2020). Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Cell 182, 357–371.e13. 10.1016/j.cell.2020.05.052. PubMed DOI PMC
Wang H., Lv S., Stroebel D., Zhang J., Pan Y., Huang X., Zhang X., Paoletti P., and Zhu S. (2021). Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron 109, 2443–2456.e5. 10.1016/j.neuron.2021.05.031. PubMed DOI
Chou T.-H., Kang H., Simorowski N., Traynelis S.F., and Furukawa H. (2022). Structural insights into assembly and function of GluN1–2C, GluN1–2A-2C, and GluN1–2D NMDARs. Mol. Cell 82, 4548–4563.e4. 10.1016/j.molcel.2022.10.008. PubMed DOI PMC
Zhang J., Zhang M., Wang Q., Wen H., Liu Z., Wang F., Wang Y., Yao F., Song N., Kou Z., et al. (2023). Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat. Struct. Mol. Biol. 30, 629–639. 10.1038/s41594-023-00959-z. PubMed DOI
Lerner E., Barth A., Hendrix J., Ambrose B., Birkedal V., Blanchard S.C., Börner R., Sung Chung H., Cordes T., Craggs T.D., et al. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 10, e60416. 10.7554/eLife.60416. PubMed DOI PMC
Martinac B. (2017). Single-molecule FRET studies of ion channels. Prog. Biophys. Mol. Biol. 130, 192–197. 10.1016/j.pbiomolbio.2017.06.014. PubMed DOI
Vafabakhsh R., Levitz J., and Isacoff E.Y. (2015). Conformational dynamics of a class C G-protein-coupled receptor. Nature 524, 497–501. 10.1038/nature14679. PubMed DOI PMC
Durham R.J., Paudyal N., Carrillo E., Bhatia N.K., Maclean D.M., Berka V., Dolino D.M., Gorfe A.A., and Jayaraman V. (2020). Conformational spread and dynamics in allostery of NMDA receptors. Proc. Natl. Acad. Sci. 117, 3839–3847. 10.1073/pnas.1910950117. PubMed DOI PMC
Dolino D.M., Chatterjee S., MacLean D.M., Flatebo C., Bishop L.D.C., Shaikh S.A., Landes C.F., and Jayaraman V. (2017). The structure-energy landscape of NMDA receptor gating. Nat. Chem. Biol. 13, 1232–1238. 10.1038/nchembio.2487. PubMed DOI PMC
Vyklicky V., Stanley C., Habrian C., and Isacoff E.Y. (2021). Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Nat. Commun. 12, 2694. 10.1038/s41467-021-23024-z. PubMed DOI PMC
Spence J.S., He R., Hoffmann H.-H., Das T., Thinon E., Rice C.M., Peng T., Chandran K., and Hang H.C. (2019). IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 15, 259–268. 10.1038/s41589-018-0213-2. PubMed DOI PMC
Nikić I., Estrada Girona G., Kang J.H., Paci G., Mikhaleva S., Koehler C., Shymanska N.V., Ventura Santos C., Spitz D., and Lemke E.A. (2016). Debugging Eukaryotic Genetic Code Expansion for Site-Specific Click-PAINT Super-Resolution Microscopy. Angew. Chem. Int. Ed Engl. 55, 16172–16176. 10.1002/anie.201608284. PubMed DOI PMC
Chatterjee A., Xiao H., Bollong M., Ai H.-W., and Schultz P.G. (2013). Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc. Natl. Acad. Sci. 110, 11803–11808. 10.1073/pnas.1309584110. PubMed DOI PMC
Jain A., Liu R., Ramani B., Arauz E., Ishitsuka Y., Ragunathan K., Park J., Chen J., Xiang Y.K., and Ha T. (2011). Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488. 10.1038/nature10016. PubMed DOI PMC
Zhu S., Stein R.A., Yoshioka C., Lee C.-H., Goehring A., Mchaourab H.S., and Gouaux E. (2016). Mechanism of NMDA Receptor Inhibition and Activation. Cell 165, 704–714. 10.1016/j.cell.2016.03.028. PubMed DOI PMC
Benveniste M., Clements J., Vyklický L., and Mayer M.L. (1990). A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 428, 333–357. 10.1113/jphysiol.1990.sp018215. PubMed DOI PMC
Cummings K.A., and Popescu G.K. (2015). Glycine-dependent activation of NMDA receptors. J. Gen. Physiol. 145, 513–527. 10.1085/jgp.201411302. PubMed DOI PMC
Esmenjaud J.-B., Stroebel D., Chan K., Grand T., David M., Wollmuth L.P., Taly A., and Paoletti P. (2019). An inter-dimer allosteric switch controls NMDA receptor activity. EMBO J. 38. 10.15252/embj.201899894. PubMed DOI PMC
Borschel W.F., Murthy S.E., Kasperek E.M., and Popescu G.K. (2011). NMDA receptor activation requires remodelling of intersubunit contacts within ligand-binding heterodimers. Nat. Commun. 2, 498. 10.1038/ncomms1512. PubMed DOI PMC
Armstrong N., Jasti J., Beich-Frandsen M., and Gouaux E. (2006). Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97. 10.1016/j.cell.2006.08.037. PubMed DOI
Twomey E.C., Yelshanskaya M.V., Grassucci R.A., Frank J., and Sobolevsky A.I. (2017). Structural Bases of Desensitization in AMPA Receptor-Auxiliary Subunit Complexes. Neuron 94, 569–580.e5. 10.1016/j.neuron.2017.04.025. PubMed DOI PMC
Nahum-Levy R., Tam E., Shavit S., and Benveniste M. (2002). Glutamate But Not Glycine Agonist Affinity for NMDA Receptors Is Influenced by Small Cations. J. Neurosci. 22, 2550–2560. 10.1523/JNEUROSCI.22-07-02550.2002. PubMed DOI PMC
Lerma J., Zukin R.S., and Bennett M.V. (1990). Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc. Natl. Acad. Sci. U. S. A. 87, 2354–2358. PubMed PMC
Vyklický L., Benveniste M., and Mayer M.L. (1990). Modulation of N-methyl-D-aspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J. Physiol. 428, 313–331. PubMed PMC
Kussius C.L., and Popescu G.K. (2009). Kinetic basis of partial agonism at NMDA receptors. Nat. Neurosci. 12, 1114–1120. 10.1038/nn.2361. PubMed DOI PMC
Dravid S.M., Prakash A., and Traynelis S.F. (2008). Activation of recombinant NR1/NR2C NMDA receptors. J. Physiol. 586, 4425. 10.1113/jphysiol.2008.158634. PubMed DOI PMC
Kessler M., Arai A., Quan A., and Lynch G. (1996). Effect of cyclothiazide on binding properties of AMPA-type glutamate receptors: lack of competition between cyclothiazide and GYKI 52466. Mol. Pharmacol. 49, 123–131. PubMed
Stern-Bach Y., Russo S., Neuman M., and Rosenmund C. (1998). A Point Mutation in the Glutamate Binding Site Blocks Desensitization of AMPA Receptors. Neuron 21, 907–918. 10.1016/S0896-6273(00)80605-4. PubMed DOI
Robert A., Armstrong N., Gouaux J.E., and Howe J.R. (2005). AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J. Neurosci. Off. J. Soc. Neurosci. 25, 3752–3762. 10.1523/JNEUROSCI.0188-05.2005. PubMed DOI PMC
Amin J.B., Salussolia C.L., Chan K., Regan M.C., Dai J., Zhou H.-X., Furukawa H., Bowen M.E., and Wollmuth L.P. (2017). Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J. Gen. Physiol. 149, 661–680. 10.1085/jgp.201711762. PubMed DOI PMC
Amin J.B., He M., Prasad R., Leng X., Zhou H.-X., and Wollmuth L.P. (2023). Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623. 10.1038/s41467-023-37260-y. PubMed DOI PMC
Dalmau J., Armangué T., Planagumà J., Radosevic M., Mannara F., Leypoldt F., Geis C., Lancaster E., Titulaer M.J., Rosenfeld M.R., et al. (2019). An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 18, 1045–1057. 10.1016/S1474-4422(19)30244-3. PubMed DOI
Fossati M., and Charrier C. (2021). Trans-synaptic interactions of ionotropic glutamate receptors. Curr. Opin. Neurobiol. 66, 85–92. 10.1016/j.conb.2020.09.001. PubMed DOI
Washburn H.R., Xia N.L., Zhou W., Mao Y.-T., and Dalva M.B. (2020). Positive surface charge of GluN1 N-terminus mediates the direct interaction with EphB2 and NMDAR mobility. Nat. Commun. 11, 570. 10.1038/s41467-020-14345-6. PubMed DOI PMC
Dalva M.B., Takasu M.A., Lin M.Z., Shamah S.M., Hu L., Gale N.W., and Greenberg M.E. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956. 10.1016/s0092-8674(00)00197-5. PubMed DOI
Petit-Pedrol M., and Groc L. (2020). Regulation of membrane NMDA receptors by dynamics and protein interactions. J. Cell Biol. 220, e202006101. 10.1083/jcb.202006101. PubMed DOI PMC
Chou T.-H., Epstein M., Michalski K., Fine E., Biggin P.C., and Furukawa H. (2022). Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 29, 507–518. 10.1038/s41594-022-00772-0. PubMed DOI PMC
Klykov O., Gangwar S.P., Yelshanskaya M.V., Yen L., and Sobolevsky A.I. (2021). Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol. Cell 81, 4771–4783.e7. 10.1016/j.molcel.2021.09.030. PubMed DOI PMC
Khanra N., Brown P.M., Perozzo A.M., Bowie D., and Meyerson J.R. (2021). Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. eLife 10, e66097. 10.7554/eLife.66097. PubMed DOI PMC
Albà M. (2000). Making alignments prettier. Genome Biol. 1, reports2047. 10.1186/gb-2000-1-2-reports2047. DOI
Notredame C., Higgins D.G., and Heringa J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217. 10.1006/jmbi.2000.4042. PubMed DOI
Edelstein A.D., Tsuchida M.A., Amodaj N., Pinkard H., Vale R.D., and Stuurman N. (2014). Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10. 10.14440/jbm.2014.36. PubMed DOI PMC
Juette M.F., Terry D.S., Wasserman M.R., Altman R.B., Zhou Z., Zhao H., and Blanchard S.C. (2016). Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344. 10.1038/nmeth.3769. PubMed DOI PMC
Kluyver T., Ragan-Kelley B., Pérez F., Granger B., Bussonnier M., Frederic J., Kelley K., Hamrick J., Grout J., Corlay S., et al. (2016). Jupyter Notebooks – a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas (IOS Press), pp. 87–90. 10.3233/978-1-61499-649-1-87. DOI