Evidence for the Association between the Intronic Haplotypes of Ionotropic Glutamate Receptors and First-Episode Schizophrenia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA19122
Ministerstvo Školství, Mládeže a Tělovýchovy
20-179458
Grantová Agentura České Republiky
TN01000013
Technologická Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007444
Ministerstvo Školství, Mládeže a Tělovýchovy
1206218
Grantová Agentura, Univerzita Karlova
NU21-04-00405
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
34945722
PubMed Central
PMC8708351
DOI
10.3390/jpm11121250
PII: jpm11121250
Knihovny.cz E-zdroje
- Klíčová slova
- BrainAGE, SNP, genetic variations, haplotypes, intron, ionotropic glutamate receptor, schizophrenia, scoring model,
- Publikační typ
- časopisecké články MeSH
The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.
Faculty of Science Charles University 12800 Prague Czech Republic
Genomics Core Facility EMBL 69117 Heidelberg Germany
Institute of Biotechnology Czech Academy of Sciences BIOCEV 25250 Vestec Czech Republic
Institute of Physiology Czech Academy of Sciences 14220 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences BIOCEV 25250 Vestec Czech Republic
The National Institute of Mental Health 25067 Klecany Czech Republic
Zobrazit více v PubMed
Saha S., Chant D., Welham J., McGrath J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005;2:e141. doi: 10.1371/journal.pmed.0020141. PubMed DOI PMC
Simeone J.C., Ward A.J., Rotella P., Collins J., Windisch R. An evaluation of variation in published estimates of schizophrenia prevalence from 1990─2013: A systematic literature review. BMC Psychiatry. 2015;15:1–14. doi: 10.1186/s12888-015-0578-7. PubMed DOI PMC
Shih R.A., Belmonte P.L., Zandi P.P. A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int. Rev. Psychiatry. 2004;16:260–283. doi: 10.1080/09540260400014401. PubMed DOI
Goldberg T.E., David A., Gold J.M. Schizophrenia. Blackwell Science Ltd.; Oxford, UK: 2003. Neurocognitive Deficits in Schizophrenia; pp. 168–184.
Tandon R., Nasrallah H.A., Keshavan M.S. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr. Res. 2009;110:1–23. doi: 10.1016/j.schres.2009.03.005. PubMed DOI
Kristiansen L., Huerta I., Beneyto M., Meador-Woodruff J.H. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol. 2007;7:48–55. doi: 10.1016/j.coph.2006.08.013. PubMed DOI
E McCullumsmith R., Hammond J.H., Shan D., Meador-Woodruff J.H. Postmortem Brain: An Underutilized Substrate for Studying Severe Mental Illness. Neuropsychopharmacology. 2013;39:65–87. doi: 10.1038/npp.2013.239. PubMed DOI PMC
Weickert C.S., Fung S.J., Catts V.S., Schofield P., Allen K.M., Moore L., Newell K., Pellen D., Huang X.-F., Catts S.V., et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry. 2012;18:1185–1192. doi: 10.1038/mp.2012.137. PubMed DOI PMC
Traynelis S.F., Wollmuth L.P., Mcbain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC
Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021;73:298–487. doi: 10.1124/pharmrev.120.000131. PubMed DOI PMC
Greger I.H., Mayer M.L. Structural biology of glutamate receptor ion channels: Towards an understanding of mechanism. Curr. Opin. Struct. Biol. 2019;57:185–195. doi: 10.1016/j.sbi.2019.05.004. PubMed DOI
Myers S.J., Dingledine R., Borges K. Genetic Regulation of Glutamate Receptor Ion Channels. Annu. Rev. Pharmacol. Toxicol. 1999;39:221–241. doi: 10.1146/annurev.pharmtox.39.1.221. PubMed DOI
Gan Q., Salussolia C., Wollmuth L.P., Scientist M., Program T., Brook S. Assembly of AMPA receptors: Mechanisms and regulation. J. Physiol. 2014;593:39–48. doi: 10.1113/jphysiol.2014.273755. PubMed DOI PMC
Greger I.H., Watson J., Cull-Candy S.G. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron. 2017;94:713–730. doi: 10.1016/j.neuron.2017.04.009. PubMed DOI
Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400. doi: 10.1038/nrn3504. PubMed DOI
Hansen K.B., Yi F., Perszyk R., Furukawa H., Wollmuth L.P., Gibb A., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150:1081–1105. doi: 10.1085/jgp.201812032. PubMed DOI PMC
Elgersma Y., Silva A.J. Molecular mechanisms of synaptic plasticity and memory. Curr. Opin. Neurobiol. 1999;9:209–213. doi: 10.1016/S0959-4388(99)80029-4. PubMed DOI
Hunt D., E Castillo P. Synaptic plasticity of NMDA receptors: Mechanisms and functional implications. Curr. Opin. Neurobiol. 2012;22:496–508. doi: 10.1016/j.conb.2012.01.007. PubMed DOI PMC
Thapar A., Cooper M., Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–346. doi: 10.1016/S2215-0366(16)30376-5. PubMed DOI
Luby E.D. Study of a New Schizophrenomimetic Drug—Sernyl. Arch. Neurol. Psychiatry. 1959;81:363–369. doi: 10.1001/archneurpsyc.1959.02340150095011. PubMed DOI
Malhotra A.K., Pinals D.A., Adler C.M., Elman I., Clifton A., Pickar D., Breier A. Ketamine-Induced Exacerbation of Psychotic Symptoms and Cognitive Impairment in Neuroleptic-Free Schizophrenics. Neuropsychopharmacology. 1997;17:141–150. doi: 10.1016/S0893-133X(97)00036-5. PubMed DOI
Mohn A.R., Gainetdinov R.R., Caron M.G., Koller B.H. Mice with Reduced NMDA Receptor Expression Display Behaviors Related to Schizophrenia. Cell. 1999;98:427–436. doi: 10.1016/S0092-8674(00)81972-8. PubMed DOI
Miyatake R., Furukawa A., Suwaki H. Identification of a novel variant of the human NR2B gene promoter region and its possible association with schizophrenia. Mol. Psychiatry. 2002;7:1101–1106. doi: 10.1038/sj.mp.4001152. PubMed DOI
Qin S., Zhao X., Pan Y., Liu J., Feng G., Fu J., Bao J., Zhang Z., He L. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur. J. Hum. Genet. 2005;13:807–814. doi: 10.1038/sj.ejhg.5201418. PubMed DOI
Rice S.R., Niu N., Berman D.B., Heston L.L., Sobell J.L. Identification of single nucleotide polymorphisms (SNPs) and other sequence changes and estimation of nucleotide diversity in coding and flanking regions of the NMDAR1 receptor gene in schizophrenic patients. Mol. Psychiatry. 2001;6:274–284. doi: 10.1038/sj.mp.4000838. PubMed DOI
Sakurai K., Toru M., Yamakawa-Kobayashi K., Arinami T. Mutation analysis of the N-methyl-d-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia. Neurosci. Lett. 2000;296:168–170. doi: 10.1016/S0304-3940(00)01599-8. PubMed DOI
Shen Y.-C., Liao D.-L., Chen J.-Y., Wang Y.-C., Lai I.-C., Liou Y.-J., Chen Y.-J., Luu S.-U., Chen C.-H. Exomic sequencing of the glutamate receptor, ionotropic, N-methyl-d-aspartate 3A gene (GRIN3A) reveals no association with schizophrenia. Schizophr. Res. 2009;114:25–32. doi: 10.1016/j.schres.2009.07.005. PubMed DOI
Takata A., Iwayama Y., Fukuo Y., Ikeda M., Okochi T., Maekawa M., Toyota T., Yamada K., Hattori E., Ohnishi T., et al. A Population-Specific Uncommon Variant in GRIN3A Associated with Schizophrenia. Biol. Psychiatry. 2013;73:532–539. doi: 10.1016/j.biopsych.2012.10.024. PubMed DOI
Williams N.M., Bowen T., Spurlock G., Norton N., Williams H., Hoogendoorn B., Owen M.J., O’Donovan M.C. Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. Mol. Psychiatry. 2002;7:508–514. doi: 10.1038/sj.mp.4001030. PubMed DOI
Yu Y., Lin Y., Takasaki Y., Wang C., Kimura H., Xing J., Ishizuka K., Toyama M., Kushima I., Mori D., et al. Rare loss of function mutations in N-methyl-d-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Transl. Psychiatry. 2018;8:1–9. doi: 10.1038/s41398-017-0061-y. PubMed DOI PMC
Tarabeux J., Kebir O., Gauthier J., Hamdan F.F., Xiong L., Piton A., Spiegelman D., Henrion É., Millet B., Fathalli F., et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry. 2011;1:e55. doi: 10.1038/tp.2011.52. PubMed DOI PMC
Itokawa M., Yamada K., Yoshitsugu K., Toyota T., Suga T., Ohba H., Watanabe A., Hattori E., Shimizu H., Kumakura T., et al. A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics. 2003;13:271–278. doi: 10.1097/00008571-200305000-00006. PubMed DOI
Iwayama-Shigeno Y., Yamada K., Itokawa M., Toyota T., Meerabux J.M., Minabe Y., Mori N., Inada T., Yoshikawa T. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci. Lett. 2005;378:102–105. doi: 10.1016/j.neulet.2004.12.013. PubMed DOI
Ripke S., Neale B.M., Corvin A., Walters J.T.R., Farh K.-H., Holmans P.A., Lee P., Bulik-Sullivan B., Collier D.A., Huang H., et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427. doi: 10.1038/nature13595. PubMed DOI PMC
International T., Consortium S. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nat. Cell Biol. 2009;460:748–752. doi: 10.1038/nature08185. PubMed DOI PMC
Ripke S., O’Dushlaine C., Chambert K., Moran J., Kähler A.K., Akterin S., Bergen S., Collins A.L., Crowley J., Fromer M., et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013;45:1150–1159. doi: 10.1038/ng.2742. PubMed DOI PMC
Frank R., McRae A.F., Pocklington A.J., Van De Lagemaat L.N., Navarro P., Croning M.D.R., Komiyama N.H., Bradley S.J., Challiss R.A.J., Armstrong J.D., et al. Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE. 2011;6:e19011. doi: 10.1371/journal.pone.0019011. PubMed DOI PMC
Kirov G., Pocklington A., Holmans P., Ivanov D., Ikeda M., Ruderfer D., Moran J., Chambert K., Toncheva D., Georgieva L., et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry. 2011;17:142–153. doi: 10.1038/mp.2011.154. PubMed DOI PMC
Pocklington A.J., Rees E., Donovan M.C.O., Owen M.J., Pocklington A.J., Rees E., Walters J.T.R., Han J., Kavanagh D.H., Chambert K.D. Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia Article Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia. Neuron. 2015;86:1203–1214. doi: 10.1016/j.neuron.2015.04.022. PubMed DOI PMC
Purcell S.M., Moran J., Fromer M., Ruderfer D., Solovieff N., Roussos P., O’Dushlaine C., Chambert K., Bergen S., Kähler A., et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–190. doi: 10.1038/nature12975. PubMed DOI PMC
Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Hergueta T., Baker R., Dunbar G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59:22–33; quiz 34–57. PubMed
Kay S.R., Fiszbein A., Opler L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987;13:261–276. doi: 10.1093/schbul/13.2.261. PubMed DOI
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Rausch T., Fritz M.H.-Y., O Korbel J., Benes V. Alfred: Interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencing. Bioinformatics. 2019;35:2489–2491. doi: 10.1093/bioinformatics/bty1007. PubMed DOI PMC
Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907
McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC
Zhang Z., Xin D., Wang P., Zhou L., Hu L., Kong X., Hurst L.D. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol. 2009;7:23. doi: 10.1186/1741-7007-7-23. PubMed DOI PMC
Wright S. The interpretation of population structure by f-statistics with special regard to systems of mating. Evolution. 1965;19:395–420. doi: 10.1111/j.1558-5646.1965.tb01731.x. DOI
Meirmans P.G., Hedrick P.W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 2011;11:5–18. doi: 10.1111/j.1755-0998.2010.02927.x. PubMed DOI
Weir B.S., Cockerham C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38:1358–1370. doi: 10.2307/2408641. PubMed DOI
Franke K., Ziegler G., Klöppel S., Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage. 2010;50:883–892. doi: 10.1016/j.neuroimage.2010.01.005. PubMed DOI
Franke K., Luders E., May A., Wilke M., Gaser C. Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage. 2012;63:1305–1312. doi: 10.1016/j.neuroimage.2012.08.001. PubMed DOI
García-Recio A., Santos-Gómez A., Soto D., Julia-Palacios N., García-Cazorla À., Altafaj X., Olivella M. GRIN database: A unified and manually curated repertoire of GRIN variants. Hum. Mutat. 2021;42:8–18. doi: 10.1002/humu.24141. PubMed DOI
Hornig T., Grüning B., Kundu K., Houwaart T., Backofen R., Biber K., Normann C. GRIN3B missense mutation as an inherited risk factor for schizophrenia: Whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet. Res. 2017;99:e1. doi: 10.1017/S0016672316000148. PubMed DOI PMC
Matsuno H., Ohi K., Hashimoto R., Yamamori H., Yasuda Y., Fujimoto M., Yano-Umeda S., Saneyoshi T., Takeda M., Hayashi Y. A Naturally Occurring Null Variant of the NMDA Type Glutamate Receptor NR3B Subunit Is a Risk Factor of Schizophrenia. PLoS ONE. 2015;10:e0116319. doi: 10.1371/journal.pone.0116319. PubMed DOI PMC
El-Brolosy M.A., Kontarakis Z., Rossi A., Kuenne C., Günther S., Fukuda N., Kikhi K., Boezio G.L.M., Takacs C.M., Lai S.-L., et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568:193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC
Mignone F., Gissi C., Liuni S., Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3:reviews0004.1. doi: 10.1186/gb-2002-3-3-reviews0004. PubMed DOI PMC
Hu Z., Bruno A.E. The Influence of 3′UTRs on MicroRNA Function Inferred from Human SNP Data. Comp. Funct. Genom. 2011;2011:1–9. doi: 10.1155/2011/910769. PubMed DOI PMC
Zhang Y., Fan M., Wang Q., He G., Fu Y., Li H., Yu S. Polymorphisms in MicroRNA Genes And Genes Involving in NMDAR Signaling and Schizophrenia: A Case-Control Study in Chinese Han Population. Sci. Rep. 2015;5:12984. doi: 10.1038/srep12984. PubMed DOI PMC
Shen H., Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clin. Sci. 2016;130:1137–1146. doi: 10.1042/CS20160046. PubMed DOI PMC
D’Orazio K.N., Wu C.C.-C., Sinha N., Loll-Krippleber R., Brown G.W., Green R. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife. 2019;8:8. doi: 10.7554/eLife.49117. PubMed DOI PMC
Pinheiro P., Perrais D., Coussen F., Barhanin J., Bettler B., Mann J.R., Malva J., Heinemann S.F., Mulle C. GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA. 2007;104:12181–12186. doi: 10.1073/pnas.0608891104. PubMed DOI PMC
Liu Y.-P., Ding M., Zhang X.-C., Liu Y., Xuan J.-F., Xing J.-X., Xia X., Yao J., Wang B.-J. Association between polymorphisms in the GRIN1 gene 5′ regulatory region and schizophrenia in a northern Han Chinese population and haplotype effects on protein expression in vitro. BMC Med. Genet. 2019;20:26. doi: 10.1186/s12881-019-0757-3. PubMed DOI PMC
Formicola D., Aloia A., Sampaolo S., Farina O., Diodato D., Griffiths L.R., Gianfrancesco F., Di Iorio G., Esposito T. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC Med. Genet. 2010;11:103. doi: 10.1186/1471-2350-11-103. PubMed DOI PMC
Domart M.-C., Benyamina A., Lemoine A., Bourgain C., Blecha L., Debuire B., Reynaud M., Saffroy R. Association between a polymorphism in the promoter of a glutamate receptor subunit gene (GRIN2A) and alcoholism. Addict. Biol. 2011;17:783–785. doi: 10.1111/j.1369-1600.2011.00321.x. PubMed DOI
Butler J.E.F., Kadonaga J.T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes Dev. 2002:2583–2592. doi: 10.1101/gad.1026202. PubMed DOI
Bai G., Hoffman P.W. Biology of the NMDA Receptor. CRC Press; Boca Raton, FL, USA: 2009. Transcriptional Regulation of NMDA Receptor Expression; pp. 79–102. PubMed
Jiang Y., Lin M., Jicha G.A., Ding X., McIlwrath S.L., Fardo D., Broster L.S., Schmitt F.A., Kryscio R., Lipsky R.H. Functional human GRIN2B promoter polymorphism and variation of mental processing speed in older adults. Aging. 2017;9:1293–1306. doi: 10.18632/aging.101228. PubMed DOI PMC
Toulopoulou T., Zhang X., Cherny S., Dickinson D., Berman K.F., E Straub R., Sham P., Weinberger D.R. Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain. 2019;142:471–485. doi: 10.1093/brain/awy279. PubMed DOI PMC
Wimberley T., Gasse C., Meier S.M., Agerbo E., MacCabe J.H., Horsdal H.T. Polygenic Risk Score for Schizophrenia and Treatment-Resistant Schizophrenia. Schizophr. Bull. 2017;43:1064–1069. doi: 10.1093/schbul/sbx007. PubMed DOI PMC
Chalmer M.A., Esserlind A.-L., Olesen J., Hansen T.F. Polygenic risk score: Use in migraine research. J. Headache Pain. 2018;19:29. doi: 10.1186/s10194-018-0856-0. PubMed DOI PMC
Gogtay N., Thompson P.M. Mapping gray matter development: Implications for typical development and vulnerability to psychopathology. Brain Cogn. 2010;72:6–15. doi: 10.1016/j.bandc.2009.08.009. PubMed DOI PMC
Schnack H.G., van Haren N.E.M., Nieuwenhuis M., Pol H.E.H., Cahn W., Kahn R.S. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. Am. J. Psychiatry. 2016;173:607–616. doi: 10.1176/appi.ajp.2015.15070922. PubMed DOI
Hajek T., Franke K., Kolenic M., Capkova J., Matejka M., Propper L., Uher R., Stopkova P., Novák T., Paus T., et al. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophr. Bull. 2019;45:190–198. doi: 10.1093/schbul/sbx172. PubMed DOI PMC
Cahn W., Rais M., Stigter F., van Haren N., Caspers E., Pol H.H., Xu Z., Schnack H., Kahn R. Psychosis and brain volume changes during the first five years of schizophrenia. Eur. Neuropsychopharmacol. 2009;19:147–151. doi: 10.1016/j.euroneuro.2008.10.006. PubMed DOI
Fusar-Poli P., Smieskova R., Kempton M., Ho B.-C., Andreasen N., Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci. Biobehav. Rev. 2013;37:1680–1691. doi: 10.1016/j.neubiorev.2013.06.001. PubMed DOI PMC
Brans R.G.H., Van Haren N.E.M., Van Baal G.C.M., Schnack H.G., Kahn R.S., Pol H.E.H. Heritability of Changes in Brain Volume Over Time in Twin Pairs Discordant for Schizophrenia. Arch. Gen. Psychiatry. 2008;65:1259–1268. doi: 10.1001/archpsyc.65.11.1259. PubMed DOI