Evidence for the Association between the Intronic Haplotypes of Ionotropic Glutamate Receptors and First-Episode Schizophrenia

. 2021 Nov 25 ; 11 (12) : . [epub] 20211125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34945722

Grantová podpora
LTAUSA19122 Ministerstvo Školství, Mládeže a Tělovýchovy
20-179458 Grantová Agentura České Republiky
TN01000013 Technologická Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007444 Ministerstvo Školství, Mládeže a Tělovýchovy
1206218 Grantová Agentura, Univerzita Karlova
NU21-04-00405 Agentura Pro Zdravotnický Výzkum České Republiky

The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.

Zobrazit více v PubMed

Saha S., Chant D., Welham J., McGrath J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005;2:e141. doi: 10.1371/journal.pmed.0020141. PubMed DOI PMC

Simeone J.C., Ward A.J., Rotella P., Collins J., Windisch R. An evaluation of variation in published estimates of schizophrenia prevalence from 1990─2013: A systematic literature review. BMC Psychiatry. 2015;15:1–14. doi: 10.1186/s12888-015-0578-7. PubMed DOI PMC

Shih R.A., Belmonte P.L., Zandi P.P. A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int. Rev. Psychiatry. 2004;16:260–283. doi: 10.1080/09540260400014401. PubMed DOI

Goldberg T.E., David A., Gold J.M. Schizophrenia. Blackwell Science Ltd.; Oxford, UK: 2003. Neurocognitive Deficits in Schizophrenia; pp. 168–184.

Tandon R., Nasrallah H.A., Keshavan M.S. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr. Res. 2009;110:1–23. doi: 10.1016/j.schres.2009.03.005. PubMed DOI

Kristiansen L., Huerta I., Beneyto M., Meador-Woodruff J.H. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol. 2007;7:48–55. doi: 10.1016/j.coph.2006.08.013. PubMed DOI

E McCullumsmith R., Hammond J.H., Shan D., Meador-Woodruff J.H. Postmortem Brain: An Underutilized Substrate for Studying Severe Mental Illness. Neuropsychopharmacology. 2013;39:65–87. doi: 10.1038/npp.2013.239. PubMed DOI PMC

Weickert C.S., Fung S.J., Catts V.S., Schofield P., Allen K.M., Moore L., Newell K., Pellen D., Huang X.-F., Catts S.V., et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry. 2012;18:1185–1192. doi: 10.1038/mp.2012.137. PubMed DOI PMC

Traynelis S.F., Wollmuth L.P., Mcbain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC

Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021;73:298–487. doi: 10.1124/pharmrev.120.000131. PubMed DOI PMC

Greger I.H., Mayer M.L. Structural biology of glutamate receptor ion channels: Towards an understanding of mechanism. Curr. Opin. Struct. Biol. 2019;57:185–195. doi: 10.1016/j.sbi.2019.05.004. PubMed DOI

Myers S.J., Dingledine R., Borges K. Genetic Regulation of Glutamate Receptor Ion Channels. Annu. Rev. Pharmacol. Toxicol. 1999;39:221–241. doi: 10.1146/annurev.pharmtox.39.1.221. PubMed DOI

Gan Q., Salussolia C., Wollmuth L.P., Scientist M., Program T., Brook S. Assembly of AMPA receptors: Mechanisms and regulation. J. Physiol. 2014;593:39–48. doi: 10.1113/jphysiol.2014.273755. PubMed DOI PMC

Greger I.H., Watson J., Cull-Candy S.G. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron. 2017;94:713–730. doi: 10.1016/j.neuron.2017.04.009. PubMed DOI

Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400. doi: 10.1038/nrn3504. PubMed DOI

Hansen K.B., Yi F., Perszyk R., Furukawa H., Wollmuth L.P., Gibb A., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150:1081–1105. doi: 10.1085/jgp.201812032. PubMed DOI PMC

Elgersma Y., Silva A.J. Molecular mechanisms of synaptic plasticity and memory. Curr. Opin. Neurobiol. 1999;9:209–213. doi: 10.1016/S0959-4388(99)80029-4. PubMed DOI

Hunt D., E Castillo P. Synaptic plasticity of NMDA receptors: Mechanisms and functional implications. Curr. Opin. Neurobiol. 2012;22:496–508. doi: 10.1016/j.conb.2012.01.007. PubMed DOI PMC

Thapar A., Cooper M., Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–346. doi: 10.1016/S2215-0366(16)30376-5. PubMed DOI

Luby E.D. Study of a New Schizophrenomimetic Drug—Sernyl. Arch. Neurol. Psychiatry. 1959;81:363–369. doi: 10.1001/archneurpsyc.1959.02340150095011. PubMed DOI

Malhotra A.K., Pinals D.A., Adler C.M., Elman I., Clifton A., Pickar D., Breier A. Ketamine-Induced Exacerbation of Psychotic Symptoms and Cognitive Impairment in Neuroleptic-Free Schizophrenics. Neuropsychopharmacology. 1997;17:141–150. doi: 10.1016/S0893-133X(97)00036-5. PubMed DOI

Mohn A.R., Gainetdinov R.R., Caron M.G., Koller B.H. Mice with Reduced NMDA Receptor Expression Display Behaviors Related to Schizophrenia. Cell. 1999;98:427–436. doi: 10.1016/S0092-8674(00)81972-8. PubMed DOI

Miyatake R., Furukawa A., Suwaki H. Identification of a novel variant of the human NR2B gene promoter region and its possible association with schizophrenia. Mol. Psychiatry. 2002;7:1101–1106. doi: 10.1038/sj.mp.4001152. PubMed DOI

Qin S., Zhao X., Pan Y., Liu J., Feng G., Fu J., Bao J., Zhang Z., He L. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur. J. Hum. Genet. 2005;13:807–814. doi: 10.1038/sj.ejhg.5201418. PubMed DOI

Rice S.R., Niu N., Berman D.B., Heston L.L., Sobell J.L. Identification of single nucleotide polymorphisms (SNPs) and other sequence changes and estimation of nucleotide diversity in coding and flanking regions of the NMDAR1 receptor gene in schizophrenic patients. Mol. Psychiatry. 2001;6:274–284. doi: 10.1038/sj.mp.4000838. PubMed DOI

Sakurai K., Toru M., Yamakawa-Kobayashi K., Arinami T. Mutation analysis of the N-methyl-d-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia. Neurosci. Lett. 2000;296:168–170. doi: 10.1016/S0304-3940(00)01599-8. PubMed DOI

Shen Y.-C., Liao D.-L., Chen J.-Y., Wang Y.-C., Lai I.-C., Liou Y.-J., Chen Y.-J., Luu S.-U., Chen C.-H. Exomic sequencing of the glutamate receptor, ionotropic, N-methyl-d-aspartate 3A gene (GRIN3A) reveals no association with schizophrenia. Schizophr. Res. 2009;114:25–32. doi: 10.1016/j.schres.2009.07.005. PubMed DOI

Takata A., Iwayama Y., Fukuo Y., Ikeda M., Okochi T., Maekawa M., Toyota T., Yamada K., Hattori E., Ohnishi T., et al. A Population-Specific Uncommon Variant in GRIN3A Associated with Schizophrenia. Biol. Psychiatry. 2013;73:532–539. doi: 10.1016/j.biopsych.2012.10.024. PubMed DOI

Williams N.M., Bowen T., Spurlock G., Norton N., Williams H., Hoogendoorn B., Owen M.J., O’Donovan M.C. Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. Mol. Psychiatry. 2002;7:508–514. doi: 10.1038/sj.mp.4001030. PubMed DOI

Yu Y., Lin Y., Takasaki Y., Wang C., Kimura H., Xing J., Ishizuka K., Toyama M., Kushima I., Mori D., et al. Rare loss of function mutations in N-methyl-d-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Transl. Psychiatry. 2018;8:1–9. doi: 10.1038/s41398-017-0061-y. PubMed DOI PMC

Tarabeux J., Kebir O., Gauthier J., Hamdan F.F., Xiong L., Piton A., Spiegelman D., Henrion É., Millet B., Fathalli F., et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry. 2011;1:e55. doi: 10.1038/tp.2011.52. PubMed DOI PMC

Itokawa M., Yamada K., Yoshitsugu K., Toyota T., Suga T., Ohba H., Watanabe A., Hattori E., Shimizu H., Kumakura T., et al. A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics. 2003;13:271–278. doi: 10.1097/00008571-200305000-00006. PubMed DOI

Iwayama-Shigeno Y., Yamada K., Itokawa M., Toyota T., Meerabux J.M., Minabe Y., Mori N., Inada T., Yoshikawa T. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci. Lett. 2005;378:102–105. doi: 10.1016/j.neulet.2004.12.013. PubMed DOI

Ripke S., Neale B.M., Corvin A., Walters J.T.R., Farh K.-H., Holmans P.A., Lee P., Bulik-Sullivan B., Collier D.A., Huang H., et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427. doi: 10.1038/nature13595. PubMed DOI PMC

International T., Consortium S. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nat. Cell Biol. 2009;460:748–752. doi: 10.1038/nature08185. PubMed DOI PMC

Ripke S., O’Dushlaine C., Chambert K., Moran J., Kähler A.K., Akterin S., Bergen S., Collins A.L., Crowley J., Fromer M., et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013;45:1150–1159. doi: 10.1038/ng.2742. PubMed DOI PMC

Frank R., McRae A.F., Pocklington A.J., Van De Lagemaat L.N., Navarro P., Croning M.D.R., Komiyama N.H., Bradley S.J., Challiss R.A.J., Armstrong J.D., et al. Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE. 2011;6:e19011. doi: 10.1371/journal.pone.0019011. PubMed DOI PMC

Kirov G., Pocklington A., Holmans P., Ivanov D., Ikeda M., Ruderfer D., Moran J., Chambert K., Toncheva D., Georgieva L., et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry. 2011;17:142–153. doi: 10.1038/mp.2011.154. PubMed DOI PMC

Pocklington A.J., Rees E., Donovan M.C.O., Owen M.J., Pocklington A.J., Rees E., Walters J.T.R., Han J., Kavanagh D.H., Chambert K.D. Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia Article Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia. Neuron. 2015;86:1203–1214. doi: 10.1016/j.neuron.2015.04.022. PubMed DOI PMC

Purcell S.M., Moran J., Fromer M., Ruderfer D., Solovieff N., Roussos P., O’Dushlaine C., Chambert K., Bergen S., Kähler A., et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–190. doi: 10.1038/nature12975. PubMed DOI PMC

Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Hergueta T., Baker R., Dunbar G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59:22–33; quiz 34–57. PubMed

Kay S.R., Fiszbein A., Opler L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987;13:261–276. doi: 10.1093/schbul/13.2.261. PubMed DOI

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Rausch T., Fritz M.H.-Y., O Korbel J., Benes V. Alfred: Interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencing. Bioinformatics. 2019;35:2489–2491. doi: 10.1093/bioinformatics/bty1007. PubMed DOI PMC

Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907

McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC

Zhang Z., Xin D., Wang P., Zhou L., Hu L., Kong X., Hurst L.D. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol. 2009;7:23. doi: 10.1186/1741-7007-7-23. PubMed DOI PMC

Wright S. The interpretation of population structure by f-statistics with special regard to systems of mating. Evolution. 1965;19:395–420. doi: 10.1111/j.1558-5646.1965.tb01731.x. DOI

Meirmans P.G., Hedrick P.W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 2011;11:5–18. doi: 10.1111/j.1755-0998.2010.02927.x. PubMed DOI

Weir B.S., Cockerham C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38:1358–1370. doi: 10.2307/2408641. PubMed DOI

Franke K., Ziegler G., Klöppel S., Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage. 2010;50:883–892. doi: 10.1016/j.neuroimage.2010.01.005. PubMed DOI

Franke K., Luders E., May A., Wilke M., Gaser C. Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage. 2012;63:1305–1312. doi: 10.1016/j.neuroimage.2012.08.001. PubMed DOI

García-Recio A., Santos-Gómez A., Soto D., Julia-Palacios N., García-Cazorla À., Altafaj X., Olivella M. GRIN database: A unified and manually curated repertoire of GRIN variants. Hum. Mutat. 2021;42:8–18. doi: 10.1002/humu.24141. PubMed DOI

Hornig T., Grüning B., Kundu K., Houwaart T., Backofen R., Biber K., Normann C. GRIN3B missense mutation as an inherited risk factor for schizophrenia: Whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet. Res. 2017;99:e1. doi: 10.1017/S0016672316000148. PubMed DOI PMC

Matsuno H., Ohi K., Hashimoto R., Yamamori H., Yasuda Y., Fujimoto M., Yano-Umeda S., Saneyoshi T., Takeda M., Hayashi Y. A Naturally Occurring Null Variant of the NMDA Type Glutamate Receptor NR3B Subunit Is a Risk Factor of Schizophrenia. PLoS ONE. 2015;10:e0116319. doi: 10.1371/journal.pone.0116319. PubMed DOI PMC

El-Brolosy M.A., Kontarakis Z., Rossi A., Kuenne C., Günther S., Fukuda N., Kikhi K., Boezio G.L.M., Takacs C.M., Lai S.-L., et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568:193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC

Mignone F., Gissi C., Liuni S., Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3:reviews0004.1. doi: 10.1186/gb-2002-3-3-reviews0004. PubMed DOI PMC

Hu Z., Bruno A.E. The Influence of 3′UTRs on MicroRNA Function Inferred from Human SNP Data. Comp. Funct. Genom. 2011;2011:1–9. doi: 10.1155/2011/910769. PubMed DOI PMC

Zhang Y., Fan M., Wang Q., He G., Fu Y., Li H., Yu S. Polymorphisms in MicroRNA Genes And Genes Involving in NMDAR Signaling and Schizophrenia: A Case-Control Study in Chinese Han Population. Sci. Rep. 2015;5:12984. doi: 10.1038/srep12984. PubMed DOI PMC

Shen H., Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clin. Sci. 2016;130:1137–1146. doi: 10.1042/CS20160046. PubMed DOI PMC

D’Orazio K.N., Wu C.C.-C., Sinha N., Loll-Krippleber R., Brown G.W., Green R. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife. 2019;8:8. doi: 10.7554/eLife.49117. PubMed DOI PMC

Pinheiro P., Perrais D., Coussen F., Barhanin J., Bettler B., Mann J.R., Malva J., Heinemann S.F., Mulle C. GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA. 2007;104:12181–12186. doi: 10.1073/pnas.0608891104. PubMed DOI PMC

Liu Y.-P., Ding M., Zhang X.-C., Liu Y., Xuan J.-F., Xing J.-X., Xia X., Yao J., Wang B.-J. Association between polymorphisms in the GRIN1 gene 5′ regulatory region and schizophrenia in a northern Han Chinese population and haplotype effects on protein expression in vitro. BMC Med. Genet. 2019;20:26. doi: 10.1186/s12881-019-0757-3. PubMed DOI PMC

Formicola D., Aloia A., Sampaolo S., Farina O., Diodato D., Griffiths L.R., Gianfrancesco F., Di Iorio G., Esposito T. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC Med. Genet. 2010;11:103. doi: 10.1186/1471-2350-11-103. PubMed DOI PMC

Domart M.-C., Benyamina A., Lemoine A., Bourgain C., Blecha L., Debuire B., Reynaud M., Saffroy R. Association between a polymorphism in the promoter of a glutamate receptor subunit gene (GRIN2A) and alcoholism. Addict. Biol. 2011;17:783–785. doi: 10.1111/j.1369-1600.2011.00321.x. PubMed DOI

Butler J.E.F., Kadonaga J.T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes Dev. 2002:2583–2592. doi: 10.1101/gad.1026202. PubMed DOI

Bai G., Hoffman P.W. Biology of the NMDA Receptor. CRC Press; Boca Raton, FL, USA: 2009. Transcriptional Regulation of NMDA Receptor Expression; pp. 79–102. PubMed

Jiang Y., Lin M., Jicha G.A., Ding X., McIlwrath S.L., Fardo D., Broster L.S., Schmitt F.A., Kryscio R., Lipsky R.H. Functional human GRIN2B promoter polymorphism and variation of mental processing speed in older adults. Aging. 2017;9:1293–1306. doi: 10.18632/aging.101228. PubMed DOI PMC

Toulopoulou T., Zhang X., Cherny S., Dickinson D., Berman K.F., E Straub R., Sham P., Weinberger D.R. Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain. 2019;142:471–485. doi: 10.1093/brain/awy279. PubMed DOI PMC

Wimberley T., Gasse C., Meier S.M., Agerbo E., MacCabe J.H., Horsdal H.T. Polygenic Risk Score for Schizophrenia and Treatment-Resistant Schizophrenia. Schizophr. Bull. 2017;43:1064–1069. doi: 10.1093/schbul/sbx007. PubMed DOI PMC

Chalmer M.A., Esserlind A.-L., Olesen J., Hansen T.F. Polygenic risk score: Use in migraine research. J. Headache Pain. 2018;19:29. doi: 10.1186/s10194-018-0856-0. PubMed DOI PMC

Gogtay N., Thompson P.M. Mapping gray matter development: Implications for typical development and vulnerability to psychopathology. Brain Cogn. 2010;72:6–15. doi: 10.1016/j.bandc.2009.08.009. PubMed DOI PMC

Schnack H.G., van Haren N.E.M., Nieuwenhuis M., Pol H.E.H., Cahn W., Kahn R.S. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. Am. J. Psychiatry. 2016;173:607–616. doi: 10.1176/appi.ajp.2015.15070922. PubMed DOI

Hajek T., Franke K., Kolenic M., Capkova J., Matejka M., Propper L., Uher R., Stopkova P., Novák T., Paus T., et al. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophr. Bull. 2019;45:190–198. doi: 10.1093/schbul/sbx172. PubMed DOI PMC

Cahn W., Rais M., Stigter F., van Haren N., Caspers E., Pol H.H., Xu Z., Schnack H., Kahn R. Psychosis and brain volume changes during the first five years of schizophrenia. Eur. Neuropsychopharmacol. 2009;19:147–151. doi: 10.1016/j.euroneuro.2008.10.006. PubMed DOI

Fusar-Poli P., Smieskova R., Kempton M., Ho B.-C., Andreasen N., Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci. Biobehav. Rev. 2013;37:1680–1691. doi: 10.1016/j.neubiorev.2013.06.001. PubMed DOI PMC

Brans R.G.H., Van Haren N.E.M., Van Baal G.C.M., Schnack H.G., Kahn R.S., Pol H.E.H. Heritability of Changes in Brain Volume Over Time in Twin Pairs Discordant for Schizophrenia. Arch. Gen. Psychiatry. 2008;65:1259–1268. doi: 10.1001/archpsyc.65.11.1259. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...