Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35318645
DOI
10.1111/bph.15841
Knihovny.cz E-zdroje
- Klíčová slova
- GRIN channelopathy, NMDA receptor, positive allosteric modulator, steroids, transmembrane domain,
- MeSH
- krysa rodu Rattus MeSH
- mutace MeSH
- poruchy autistického spektra * MeSH
- pregnany farmakologie MeSH
- receptory N-methyl-D-aspartátu * genetika MeSH
- steroidy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pregnany MeSH
- receptory N-methyl-D-aspartátu * MeSH
- steroidy MeSH
BACKGROUND AND PURPOSE: N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH: We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS: Analysis of the action of 4-(20-oxo-5β-pregnan-3β-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3β-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS: Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.
3rd Faculty of Medicine Charles University Prague Prague 10 Czech Republic
Institute of Organic Chemistry and Biochemistry CAS Prague 6 Czech Republic
Zobrazit více v PubMed
Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. https://doi.org/10.1016/j.softx.2015.06.001
Ahlrichs, R., Bar, M., Haser, M., Horn, H., & Kolmel, C. (1989). Electronic-structure calculations on workstation computers-The program system turbomole. Chemical Physics Letters, 162, 165-169. https://doi.org/10.1016/0009-2614(89)85118-8
Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Catterall, W. A., … Zhu, M. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 178(Suppl 1), S157-S245. https://doi.org/10.1111/bph.15539
Amin, J. B., Moody, G. R., & Wollmuth, L. P. (2021). From bedside-to-bench: What disease-associated variants are teaching us about the NMDA receptor. The Journal of Physiology, 599, 397-416. https://doi.org/10.1113/JP278705
Awadalla, P., Gauthier, J., Myers, R. A., Casals, F., Hamdan, F. F., Griffing, A. R., Côté, M., Henrion, E., Spiegelman, D., Tarabeux, J., Piton, A., Yang, Y., Boyko, A., Bustamante, C., Xiong, L., Rapoport, J. L., Addington, A. M., DeLisi, J. L. E., Krebs, M. O., … Rouleau, G. A. (2010). Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. American Journal of Human Genetics, 87, 316-324. https://doi.org/10.1016/j.ajhg.2010.07.019
Borovska, J., Vyklicky, V., Stastna, E., Kapras, V., Slavikova, B., Horak, M., Chodounska, H., & Vyklicky, L. Jr. (2012). Access of inhibitory neurosteroids to the NMDA receptor. British Journal of Pharmacology, 166, 1069-1083. https://doi.org/10.1111/j.1476-5381.2011.01816.x
Burnashev, N., & Szepetowski, P. (2015). NMDA receptor subunit mutations in neurodevelopmental disorders. Current Opinion in Pharmacology, 20, 73-82. https://doi.org/10.1016/j.coph.2014.11.008
Cerny, J., Bozikova, P., Balik, A., Marques, S. M., & Vyklicky, L. (2019). NMDA receptor opening and closing - transitions of a molecular machine revealed by molecular dynamics. Biomolecules, 9, 546. https://doi.org/10.3390/biom9100546
Chen, W., Tankovic, A., Burger, P. B., Kusumoto, H., Traynelis, S. F., & Yuan, H. (2017). Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Molecular Pharmacology, 91, 317-330. https://doi.org/10.1124/mol.116.106781
Costa, B. M., Irvine, M. W., Fang, G., Eaves, R. J., Mayo-Martin, M. B., Skifter, D. A., Jane, D. E., & Monaghan, D. T. (2010). A novel family of negative and positive allosteric modulators of NMDA receptors. The Journal of Pharmacology and Experimental Therapeutics, 335, 614-621. https://doi.org/10.1124/jpet.110.174144
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987-993. https://doi.org/10.1111/bph.14153
DeLano, W. L., & Lam, J. W. (2005). PyMOL: A communications tool for computational models. Abstracts of Papers of the American Chemical Society, 230, U1371-U1372.
Freunscht, I., Popp, B., Blank, R., Endele, S., Moog, U., Petri, H., Prott, E. C., Reis, A., Rubo, J., Zabel, B., Zenker, M., Hebebrand, J., & Wieczorek, D. (2013). Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene. Behavioral and Brain Functions, 9, 20. https://doi.org/10.1186/1744-9081-9-20
Hamdan, F. F., Gauthier, J., Araki, Y., Lin, D. T., Yoshizawa, Y., Higashi, K., Park, A. R., Spiegelman, D., Dobrzeniecka, S., Piton, A., Tomitori, H., Daoud, H., Massicotte, C., Henrion, E., Diallo, O., S2D Group, Shekarabi, M., Marineau, C., Shevell, M., … Michaud, J. L. (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. American Journal of Human Genetics, 88, 306-316. https://doi.org/10.1016/j.ajhg.2011.02.001
Hamdan, F. F., Srour, M., Capo-Chichi, J. M., Daoud, H., Nassif, C., Patry, L., Massicotte, C., Ambalavanan, A., Spiegelman, D., Diallo, O., Henrion, E., Dionne-Laporte, A., Fougerat, A., Pshezhetsky, A. V., Venkateswaran, S., Rouleau, G. A., & Michaud, J. L. (2014). De novo mutations in moderate or severe intellectual disability. PLoS Genetics, 10, e1004772. https://doi.org/10.1371/journal.pgen.1004772
Hansen, K. B., Yi, F., Perszyk, R. E., Furukawa, H., Wollmuth, L. P., Gibb, A. J., & Traynelis, S. F. (2018). Structure, function, and allosteric modulation of NMDA receptors. The Journal of General Physiology, 150, 1081-1105. https://doi.org/10.1085/jgp.201812032
Harding, S. D., Sharman, J. L., Faccenda, E., Southan, C., Pawson, A. J., Ireland, S., Gray, A. J. G., Bruce, L., Alexander, S. P. H., Anderton, S., Bryant, C., Davenport, A. P., Doerig, C., Fabbro, D., Levi-Schaffer, F., Spedding, M., Davies, J. A., & Nc, I. (2018). The IUPHAR/BPS guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091-D1106. https://doi.org/10.1093/nar/gkx1121
Hardingham, G. E., & Bading, H. (2002). Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochimica et Biophysica Acta, 1600, 148-153. https://doi.org/10.1016/S1570-9639(02)00455-7
Hedegaard, M., Hansen, K. B., Andersen, K. T., Bräuner-Osborne, H., & Traynelis, S. F. (2012). Molecular pharmacology of human NMDA receptors. Neurochemistry International, 61(4), 601-609. https://doi.org/10.1016/j.neuint.2011.11.016
Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., & Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron, 10(5), 943-954. https://doi.org/10.1016/0896-6273(93)90209-a
Horak, M., Vlcek, K., Petrovic, M., Chodounska, H., & Vyklicky, L. Jr. (2004). Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. The Journal of Neuroscience, 24, 10318-10325. https://doi.org/10.1523/JNEUROSCI.2099-04.2004
Hrcka Krausova, B., Kysilov, B., Cerny, J., Vyklicky, V., Smejkalova, T., Ladislav, M., Balik, A., Korinek, M., Chodounska, H., Kudova, E., & Vyklicky, L. (2020). Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40, 5922-5936. https://doi.org/10.1523/JNEUROSCI.3010-19.2020
Hu, C., Chen, W., Myers, S. J., Yuan, H., & Traynelis, S. F. (2016). Human GRIN2B variants in neurodevelopmental disorders. Journal of Pharmacological Sciences, 132, 115-121. https://doi.org/10.1016/j.jphs.2016.10.002
Irvine, M. W., Costa, B. M., Volianskis, A., Fang, G., Ceolin, L., Collingridge, G. L., Monaghan, D. T., & Jane, D. E. (2012). Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-D-aspartate receptors. Neurochemistry International, 61, 593-600. https://doi.org/10.1016/j.neuint.2011.12.020
Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., & Nakanishi, S. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. Journal of Biological Chemistry, 268(4), 2836-2843. https://doi.org/10.1016/S0021-9258(18)53849-7
Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29, 1859-1865. https://doi.org/10.1002/jcc.20945
Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry, 28, 555-569. https://doi.org/10.1002/jcc.20570
Karakas, E., & Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 344, 992-997. https://doi.org/10.1126/science.1251915
Khatri, A., Burger, P. B., Swanger, S. A., Hansen, K. B., Zimmerman, S., Karakas, E., Liotta, D. C., Furukawa, H., Snyder, J. P., & Traynelis, S. F. (2014). Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Molecular Pharmacology, 86, 548-560. https://doi.org/10.1124/mol.114.094516
Klamt, A., & Schuurmann, G. (1993). Cosmo-A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2, 799-805. https://doi.org/10.1039/P29930000799
Korinek, M., Kapras, V., Vyklicky, V., Adamusova, E., Borovska, J., Vales, K., Stuchlik, A., Horak, M., Chodounska, H., & Vyklicky, L. Jr. (2011). Neurosteroid modulation of N-methyl-D-aspartate receptors: Molecular mechanism and behavioral effects. Steroids, 76, 1409-1418. https://doi.org/10.1016/j.steroids.2011.09.002
Korinek, M., Vyklicky, V., Borovska, J., Lichnerova, K., Kaniakova, M., Krausova, B., Krusek, J., Balik, A., Smejkalova, T., Horak, M., & Vyklicky, L. (2015). Cholesterol modulates open probability and desensitization of NMDA receptors. The Journal of Physiology, 593, 2279-2293. https://doi.org/10.1113/jphysiol.2014.288209
Krausova, B., Slavikova, B., Nekardova, M., Hubalkova, P., Vyklicky, V., Chodounska, H., Vyklicky, L., & Kudova, E. (2018). Positive modulators of the N-methyl-d-aspartate receptor: Structure-activity relationship study of steroidal 3-hemiesters. Journal of Medicinal Chemistry, 61, 4505-4516. https://doi.org/10.1021/acs.jmedchem.8b00255
Kudova, E., Chodounska, H., Slavikova, B., Budesinsky, M., Nekardova, M., Vyklicky, V., Krausova, B., Svehla, P., & Vyklicky, L. (2015). A new class of potent N-methyl-D-aspartate receptor inhibitors: Sulfated neuroactive steroids with lipophilic D-ring modifications. Journal of Medicinal Chemistry, 58, 5950-5966. https://doi.org/10.1021/acs.jmedchem.5b00570
Ladislav, M., Cerny, J., Krusek, J., Horak, M., Balik, A., & Vyklicky, L. (2018). The LILI motif of M3-S2 linkers is a component of the NMDA receptor channel gate. Frontiers in Molecular Neuroscience, 11, 113. https://doi.org/10.3389/fnmol.2018.00113
Lazaridis, T. (2003). Effective energy function for proteins in lipid membranes. Proteins, 52, 176-192. https://doi.org/10.1002/prot.10410
Lee, C. H., Lu, W., Michel, J. C., Goehring, A., Du, J., Song, X., & Gouaux, E. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 511, 191-197. https://doi.org/10.1038/nature13548
Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L. 3rd, MacKerell, A. D. Jr., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12, 405-413. https://doi.org/10.1021/acs.jctc.5b00935
Lelieveld, S. H., Reijnders, M. R. F., Pfundt, R., Yntema, H. G., Kamsteeg, E. J., de Vries, P., de Vries, B. B. A., Willemsen, M. H., Kleefstra, T., Löhner, K., Vreeburg, M., Stevens, S. J. C., van der Burgt, I., Bongers, E. M. H. F., Stegmann, A. P. A., Rump, P., Rinne, T., Nelen, M. R., Veltman, J. A., … Gilissen, C. (2016). Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nature Neuroscience, 19, 1194-1196. https://doi.org/10.1038/nn.4352
Lemke, J. R., Hendrickx, R., Geider, K., Laube, B., Schwake, M., Harvey, R. J., James, V. M., Pepler, A., Steiner, I., Hortnagel, K., Neidhardt, J., Ruf, S., Wolff, M., Bartholdi, D., Caraballo, R., Platzer, K., Suls, A., De Jonghe, P., Biskup, S., & Weckhuysen, S. (2014). GRIN2B mutations in west syndrome and intellectual disability with focal epilepsy. Annals of Neurology, 75, 147-154. https://doi.org/10.1002/ana.24073
Lester, R. A., Clements, J. D., Westbrook, G. L., & Jahr, C. E. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346, 565-567. https://doi.org/10.1038/346565a0
Mony, L., Zhu, S., Carvalho, S., & Paoletti, P. (2011). Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. The EMBO Journal, 30, 3134-3146. https://doi.org/10.1038/emboj.2011.203
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529-540. https://doi.org/10.1016/0896-6273(94)90210-0
Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., & Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256(5060), 1217-1221. https://doi.org/10.1126/science.256.5060.1217
Mullasseril, P., Hansen, K. B., Vance, K. M., Ogden, K. K., Yuan, H., Kurtkaya, N. L., Santangelo, R., Orr, A. G., Le, P., Vellano, K. M., Liotta, D. C., & Traynelis, S. F. (2010). A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nature Communications, 1, 90. https://doi.org/10.1038/ncomms1085
Mullier, B., Wolff, C., Sands, Z. A., Ghisdal, P., Muglia, P., Kaminski, R. M., & Andre, V. M. (2017). GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology, 123, 322-331. https://doi.org/10.1016/j.neuropharm.2017.05.017
Ogden, K. K., Chen, W., Swanger, S. A., McDaniel, M. J., Fan, L. Z., Hu, C., Tankovic, A., Kusumoto, H., Kosobucki, G. J., Schulien, A. J., Su, Z., Pecha, J., Bhattacharya, S., Petrovski, S., Cohen, A. E., Aizenman, E., Traynelis, S. F., & Yuan, H. (2017). Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genetics, 13, e1006536. https://doi.org/10.1371/journal.pgen.1006536
Ogden, K. K., & Traynelis, S. F. (2013). Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Molecular Pharmacology, 83, 1045-1056. https://doi.org/10.1124/mol.113.085209
Ohba, C., Shiina, M., Tohyama, J., Haginoya, K., Lerman-Sagie, T., Okamoto, N., Blumkin, L., Lev, D., Mukaida, S., Nozaki, F., Uematsu, M., Onuma, A., Kodera, H., Nakashima, M., Tsurusaki, Y., Miyake, N., Tanaka, F., Kato, M., Ogata, K., … Matsumoto, N. (2015). GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia, 56, 841-848. https://doi.org/10.1111/epi.12987
Park-Chung, M., Wu, F. S., & Farb, D. H. (1994). 3α-Hydroxy-5β-pregnan-20-one sulfate: A negative modulator of the NMDA-induced current in cultured neurons. Molecular Pharmacology, 46, 146-150.
Park-Chung, M., Wu, F. S., Purdy, R. H., Malayev, A. A., Gibbs, T. T., & Farb, D. H. (1997). Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Molecular Pharmacology, 52, 1113-1123. https://doi.org/10.1124/mol.52.6.1113
Paul, S. M., Doherty, J. J., Robichaud, A. J., Belfort, G. M., Chow, B. Y., Hammond, R. S., Crawford, D. C., Linsenbardt, A. J., Shu, H. J., Izumi, Y., Mennerick, S. J., & Zorumski, C. F. (2013). The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. The Journal of Neuroscience, 33, 17290-17300. https://doi.org/10.1523/JNEUROSCI.2619-13.2013
Petrovic, M., Sedlacek, M., Horak, M., Chodounska, H., & Vyklicky, L. Jr. (2005). 20-oxo-5β-pregnan-3α-yl sulfate is a use-dependent NMDA receptor inhibitor. The Journal of Neuroscience, 25, 8439-8450. https://doi.org/10.1523/JNEUROSCI.1407-05.2005
Platzer, K., Yuan, H., Schütz, H., Winschel, A., Chen, W., Hu, C., Kusumoto, H., Heyne, H. O., Helbig, K. L., Tang, S., Willing, M. C., Tinkle, B. T., Adams, D. J., Depienne, C., Keren, B., Mignot, C., Frengen, E., Strømme, P., Biskup, S., … Lemke, J. R. (2017). GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 54, 460-470. https://doi.org/10.1136/jmedgenet-2016-104509
Rambousek, L., Bubenikova-Valesova, V., Kacer, P., Syslova, K., Kenney, J., Holubova, K., Najmanova, V., Zach, P., Svoboda, J., Stuchlik, A., Chodounska, H., Kapras, V., Adamusova, E., Borovska, J., Vyklicky, L., & Vales, K. (2011). Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology, 61, 61-68. https://doi.org/10.1016/j.neuropharm.2011.02.018
Redin, C., Gérard, B., Lauer, J., Herenger, Y., Muller, J., Quartier, A., Masurel-Paulet, A., Willems, M., Lesca, G., el-Chehadeh, S., le Gras, S., Vicaire, S., Philipps, M., Dumas, M., Geoffroy, V., Feger, C., Haumesser, N., Alembik, Y., Barth, M., … Piton, A. (2014). Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. Journal of Medical Genetics, 51, 724-736. https://doi.org/10.1136/jmedgenet-2014-102554
Shu, H. J., Eisenman, L. N., Jinadasa, D., Covey, D. F., Zorumski, C. F., & Mennerick, S. (2004). Slow actions of neuroactive steroids at GABAA receptors. The Journal of Neuroscience, 24, 6667-6675. https://doi.org/10.1523/JNEUROSCI.1399-04.2004
Slavikova, B., Chodounska, H., Nekardova, M., Vyklicky, V., Ladislav, M., Hubalkova, P., Krausova, B., Vyklicky, L., & Kudova, E. (2016). Neurosteroid-like inhibitors of N-methyl-d-aspartate receptor: Substituted 2-sulfates and 2-hemisuccinates of perhydrophenanthrene. Journal of Medicinal Chemistry, 59, 4724-4739. https://doi.org/10.1021/acs.jmedchem.6b00079
Soto, D., Altafaj, X., Sindreu, C., & Bayes, A. (2014). Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Communicative & Integrative Biology, 7, e27887. https://doi.org/10.4161/cib.27887
Stastna, E., Chodounska, H., Pouzar, V., Kapras, V., Borovska, J., Cais, O., & Vyklicky, L. Jr. (2009). Synthesis of C3, C5, and C7 pregnane derivatives and their effect on NMDA receptor responses in cultured rat hippocampal neurons. Steroids, 74, 256-263. https://doi.org/10.1016/j.steroids.2008.11.011
Swanger, S. A., Chen, W., Wells, G., Burger, P. B., Tankovic, A., Bhattacharya, S., Strong, K. L., Hu, C., Kusumoto, H., Zhang, J., Adams, D. R., Millichap, J. J., Petrovski, S., Traynelis, S. F., & Yuan, H. (2016). Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. American Journal of Human Genetics, 99, 1261-1280. https://doi.org/10.1016/j.ajhg.2016.10.002
Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98, 1743-1754. https://doi.org/10.1021/cr970022c
The UniProt, C. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45, D158-D169.
Traynelis, S. F., Hartley, M., & Heinemann, S. F. (1995). Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science, 268, 873-876. https://doi.org/10.1126/science.7754371
Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., Dingledine, R., & Sibley, D. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews, 62, 405-496. https://doi.org/10.1124/pr.109.002451
Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455-461. https://doi.org/10.1002/jcc.21334
Vyklicky, V., Korinek, M., Balik, A., Smejkalova, T., Krausova, B., & Vyklicky, L. (2016). Analysis of whole-cell NMDA receptor currents. In Ionotropic glutamate receptor technologies (pp. 205-219). Springer. https://doi.org/10.1007/978-1-4939-2812-5_14
Vyklicky, V., Krausova, B., Cerny, J., Balik, A., Zapotocky, M., Novotny, M., Lichnerova, K., Smejkalova, T., Kaniakova, M., Korinek, M., Petrovic, M., Kacer, P., Horak, M., Chodounska, H., & Vyklicky, L. (2015). Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Scientific Reports, 5, 10935. https://doi.org/10.1038/srep10935
Vyklicky, V., Krausova, B., Cerny, J., Ladislav, M., Smejkalova, T., Kysilov, B., Korinek, M., Danacikova, S., Horak, M., Chodounska, H., Kudova, E., & Vyklicky, L. (2018). Surface expression, function, and Pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Frontiers in Molecular Neuroscience, 11, 110. https://doi.org/10.3389/fnmol.2018.00110
Vyklicky, V., Smejkalova, T., Krausova, B., Balik, A., Korinek, M., Borovska, J., Horak, M., Chvojkova, M., Kleteckova, L., Vales, K., Cerny, J., Nekardova, M., Chodounska, H., Kudova, E., & Vyklicky, L. (2016). Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36, 2161-2175. https://doi.org/10.1523/JNEUROSCI.3181-15.2016
Wang, T. M., Brown, B. M., Deng, L., Sellers, B. D., Lupardus, P. J., Wallweber, H. J. A., Gustafson, A., Wong, E., Volgraf, M., Schwarz, J. B., Hackos, D. H., & Hanson, J. E. (2017). A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain. Neuropharmacology, 121, 204-218. https://doi.org/10.1016/j.neuropharm.2017.04.041
Weaver, C. E., Land, M. B., Purdy, R. H., Richards, K. G., Gibbs, T. T., & Farb, D. H. (2000). Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca2+ accumulation and cell death. The Journal of Pharmacology and Experimental Therapeutics, 293, 747-754.
Webb, B., & Sali, A. (2014). Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics, 47, 1-32.
Wells, G., Yuan, H., McDaniel, M. J., Kusumoto, H., Snyder, J. P., Liotta, D. C., & Traynelis, S. F. (2018). The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins, 86, 1265-1276. https://doi.org/10.1002/prot.25595
Wu, F. S., Gibbs, T. T., & Farb, D. H. (1991). Pregnenolone sulfate: A positive allosteric modulator at the N-methyl-D- aspartate receptor. Molecular Pharmacology, 40, 333-336.
Yancey, P. G., Rodrigueza, W. V., Kilsdonk, E. P., Stoudt, G. W., Johnson, W. J., Phillips, M. C., & Rothblat, G. H. (1996). Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. The Journal of Biological Chemistry, 271, 16026-16034. https://doi.org/10.1074/jbc.271.27.16026
Yavarna, T., Al-Dewik, N., Al-Mureikhi, M., Ali, R., Al-Mesaifri, F., Mahmoud, L., Shahbeck, N., Lakhani, S., AlMulla, M., Nawaz, Z., Vitazka, P., Alkuraya, F. S., & Ben-Omran, T. (2015). High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Human Genetics, 134, 967-980. https://doi.org/10.1007/s00439-015-1575-0
Yuan, H., Hansen, K. B., Zhang, J., Pierson, T. M., Markello, T. C., Fajardo, K. V., Holloman, C. M., Golas, G., Adams, D. R., Boerkoel, C. F., Gahl, W. A., & Traynelis, S. F. (2014). Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nature Communications, 5, 3251. https://doi.org/10.1038/ncomms4251
Zimmerman, S. S., Khatri, A., Garnier-Amblard, E. C., Mullasseril, P., Kurtkaya, N. L., Gyoneva, S., Hansen, K. B., Traynelis, S. F., & Liotta, D. C. (2014). Design, synthesis, and structure-activity relationship of a novel series of GluN2C-selective potentiators. Journal of Medicinal Chemistry, 57, 2334-2356. https://doi.org/10.1021/jm401695d
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant