Genetic Landscape of Amyotrophic Lateral Sclerosis in Czech Patients
Language English Country United States Media print
Document type Journal Article
PubMed
39058450
PubMed Central
PMC11380243
DOI
10.3233/jnd-230236
PII: JND230236
Knihovny.cz E-resources
- Keywords
- Amyotrophic lateral sclerosis, C9orf72 repeat expansion, gene variants, mutation screening, neurogenetics, next-generation sequencing,
- MeSH
- Amyotrophic Lateral Sclerosis * genetics MeSH
- DNA-Binding Proteins genetics MeSH
- Adult MeSH
- DNA Repeat Expansion * MeSH
- Frontotemporal Dementia * genetics MeSH
- Genetic Predisposition to Disease MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- C9orf72 Protein * genetics MeSH
- RNA-Binding Protein FUS genetics MeSH
- Protein Serine-Threonine Kinases genetics MeSH
- Aged MeSH
- Age of Onset MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- C9orf72 protein, human MeSH Browser
- DNA-Binding Proteins MeSH
- FUS protein, human MeSH Browser
- C9orf72 Protein * MeSH
- RNA-Binding Protein FUS MeSH
- Protein Serine-Threonine Kinases MeSH
- TARDBP protein, human MeSH Browser
- TBK1 protein, human MeSH Browser
BACKGROUND: Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. OBJECTIVE: We aimed to deliver pilot data on the genetic landscape of ALS in our country. METHODS: A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). RESULTS: We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. CONCLUSION: Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
See more in PubMed
Verde F, Del Tredici K, Braak H, Ludolph A. The multisystem degeneration amyotrophic lateral sclerosis – neuropathological staging and clinical translation. Arch Ital Biol. 2017;155(4):118–130. doi: 10.12871/00039829201746. PubMed DOI
Shatunov A, Al-Chalabi A. The genetic architecture of ALS. Neurobiol Dis. 2021;147:105156. doi: 10.1016/j.nbd.2020.105156. PubMed DOI
Mathis S, Goizet C, Soulages A, Vallat JM, Le Masson G. Genetics of amyotrophic lateral sclerosis: A review. J Neurol Sci. 2019;399:217–226. doi: 10.1016/j.jns.2019.02.030. PubMed DOI
Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(7):540–549. doi: 10.1136/jnnp-2016-315018. PubMed DOI
Müller K, Brenner D, Weydt P, Meyer T, Grehl T, Petri S, et al.; German ALS network MND-NET. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry. 2018;89(8):817–827. doi: 10.1136/jnnp-2017-317611. PubMed DOI
Van Daele SH, Moisse M, van Vugt JJFA, Zwamborn RAJ, van der Spek R, van Rheenen W, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain. 2023;146(9):3769. doi: 10.1093/brain/awad120. PubMed DOI PMC
Yilmaz R, Grehl T, Eckrich L, Marschalkowski I, Weishaupt K, Valkadinov I, et al. Frequency of C9orf72 and SOD1 mutations in 302 sporadic ALS patients from three German ALS centers. Amyotroph Lateral Scler Frontotemporal Degener. 2023;24(5-6):414–419. doi: 10.1080/21678421.2023.2165946. PubMed DOI
Gromicho M, Pinto S, Gisca E, Pronto-Laborinho AC, Andersen PM, de Carvalho M. Frequency of C9orf72 hexanucleotide repeat expansion and SOD1 mutations in Portuguese patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2018;70:325.e7–325.e15. doi: 10.1016/j.neurobiolaging.2018.05.009. PubMed DOI
Tripolszki K, Gampawar P, Schmidt H, Nagy ZF, Nagy D, Klyvényi P, et al. Comprehensive Genetic Analysis of a Hungarian Amyotrophic Lateral Sclerosis Cohort. Front Genet. 2019;10:732. doi: 10.3389/fgene.2019.00732. PubMed DOI PMC
Vrabec K, Koritnik B, Leonardis L, Dolenc-Grošelj L, Zidar J, Smith B, et al. Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population. Neurobiol Aging. 2015;36(3):1601e17–20. doi: 10.1016/j.neurobiolaging.2014.11.011. PubMed DOI
Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632. PubMed DOI PMC
Majounie E, Renton AE, Mok K, Dopper EG, Waite A et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–30. doi: 10.1016/S1474-4422(12)70043-1. PubMed DOI PMC
Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J; WFN Research Group On ALS/MND A revision of the El Escorial criteria – 2015. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):291–2. doi: 10.3109/21678421.2015.1049183. PubMed DOI
Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Wooley S, Goldstein LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis, Amyotrophic Lateral Sclerosis. 2009;10(3):131–146. doi: 10.1080/17482960802654364. PubMed DOI
Turner MR, Barnwell J, Al-Chalabi A, Eisen A. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain. 2012;135(Pt 9):2883–91. doi: 10.1093/brain/aws144. PubMed DOI
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. doi: 10.1016/j.neuron.2011.09.011. PubMed DOI PMC
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8. doi: 10.1126/science.1166066. PubMed DOI
Chiò A, Borghero G, Pugliatti M, Ticca A, Calvo A, Moglia C, et al. Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene. Arch Neurol. 2011;68(5):594–8. doi: 10.1001/archneurol.2010.352. PubMed DOI PMC
Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS,et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 2015;347(6229):1436–41. doi: 10.1126/science.aaa3650. PubMed DOI PMC
Osmanovic A, Rangnau I, Kosfeld A, Abdulla S, Janssen C, Auber B, et al. FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur J Hum Genet. 2017;25(3):324–331. doi: 10.1038/ejhg.2016.186. PubMed DOI PMC
Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, et al. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron. 2018;97(6):1283–e6. doi: 10.1016/j.neuron.2018.02.027. PubMed DOI PMC
Pottier C, Rampersaud E, Baker M, Wu G, Wuu J, McCauley JL, et al. Identification of compound heterozygous variants in OPTN in an ALS-FTD patient from the CReATe consortium: a case report. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(5-6):469–471. doi: 10.1080/21678421.2018.1452947. PubMed DOI PMC
Elert-Dobkowska E, Stepniak I, Krysa W, Ziora-Jakutowicz K, Rakowicz M, Sobanska A et al. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics. 2019;20(1):27–38. doi: 10.1007/s10048-019-00565-6. PubMed DOI PMC
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat. 2016;37(7):703–9. doi: 10.1002/humu.23000. PubMed DOI
Teyssou E, Chartier L, Amador MD, Lam R, Lautrette G, Nicol M, et al. Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging. 2017;58:239.e11–239.e20. doi: 10.1016/j.neurobiolaging.2017.06.018. PubMed DOI
Wiesenfarth M, Günther K, Müller K, Witzel S, Weiland U, Mayer K et al. Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations. Brain Commun. 2023;5(2):fcad087. doi: 10.1093/braincomms/fcad087. PubMed DOI PMC
Chiò A, Borghero G, Restagno G, Mora G, Drepper C, Traynor BJ et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain. 2012;135(Pt 3):784–93. doi: 10.1093/brain/awr366. PubMed DOI PMC
Chiò A, Mazzini L, D’Alfonso S, Corrado L, Canosa A, Moglia C, et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology. 2018;91(7):e635–e642. doi: 10.1212/WNL.0000000000005996. PubMed DOI PMC
Cady J, Allred P, Bali T, Pestronk A, Goate A, Miller TM, et al. Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol. 2015;77(1):100–13. doi: 10.1002/ana.24306. PubMed DOI PMC
Cooper-Knock J, Robins H, Niedermoser I, Wyles M, Heath PR, Higginbotom A, et al. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Front Mol Neurosci. 2017;10:370. doi: 10.3389/fnmol.2017.00370. PubMed DOI PMC
Jeon GS, Shim YM, Lee DY, Kim JS, Kang MJ, Ahn SH, et al. Pathological Modification of TDP-43 in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Mol Neurobiol. 2019;56(3):2007–2021. doi: 10.1007/s12035-018-1218-2. PubMed DOI PMC
Gentile G, Perrone B, Morello G, Simone IL, Andò S, Cavallaro S, Conforti FL. Individual Oligogenic Background in p.D91A-SOD1 Amyotrophic Lateral Sclerosis Patients. Genes (Basel). 2021;12(12):1843. doi: 10.3390/genes12121843. PubMed DOI PMC
Robberecht W, Aguirre T, Van den Bosch L, Tilkin P, Cassiman JJ, Matthijs G. D90A heterozygosity in the SOD1 gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis. Neurology. 1996;47(5):1336–9. doi: 10.1212/wnl.47.5.1336. PubMed DOI
van Blitterswijk M, van Es MA, Hennekam EA, Doojies D, van Rheenen W, Medic J, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(17):3776–84. doi: 10.1093/hmg/dds199. PubMed DOI
McCann EP, Henden L, Fifita JA, Zhang KY, Grima N, Bauer DC, et al. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Med Genet. 2020:jmedgenet-2020-106866. doi: 10.1136/jmedgenet-2020-106866. PubMed DOI
Keogh MJ, Wei W, Aryaman J, Wilson I, Talbot K, Turner MR, et al. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J Neurol Neurosurg Psychiatry. 2018;89(8):813–816. doi: 10.1136/jnnp-2017-317234. PubMed DOI PMC
Ross JP, Leblond CS, Laurent SB, Spiegelman D, Dione-Laporte A, Camu W, et al. Oligogenicity, C9orf72 expansion, and variant severity in ALS. Neurogenetics. 2020;21(3):227–242. doi: 10.1007/s10048-020-00612-7. PubMed DOI
David Brenner, Kathrin Müller, Thomas Wieland, Patrick Weydt, Sarah Böhm, Dorothée Lulé et al. NEK1 mutations in familial amyotrophic lateral sclerosis, Brain. 2016;139(5):e28, 10.1093/brain/aww033. PubMed DOI
Riva N, Pozzi L, Russo T, Pipitone GB, Schito P, Domi T et al. NEK1 Variants in a Cohort of Italian Patients With Amyotrophic Lateral Sclerosis. Front Neurosci. 2022;16:833051. doi: 10.3389/fnins.2022.833051. PubMed DOI PMC
Lattante S, Doronzio PN, Conte A, Marangi G, Martello F, Bisogni G et al. Novel variants and cellular studies on patients’ primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis. Hum Mol Genet. 2021;30(1):65–71. doi: 10.1093/hmg/ddab015. PubMed DOI
Lu YQ, Chen JM, Lin H, Feng SY, Che CH, Liu CY, et al. Novel Intronic Mutations of TBK1 Promote Aberrant Splicing Modes in Amyotrophic Lateral Sclerosis. Front Mol Neurosci. 2022;15:691534. doi: 10.3389/fnmol.2022.691534. PubMed DOI PMC
Gurfinkel Y, Polain N, Sonar K, Nice P, Mancera RL, Rea SL. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurobiol Dis. 2022;174:105859. doi: 10.1016/j.nbd.2022.105859. PubMed DOI
Scarlino S, Domi T, Pozzi L, Romano A, Pipitone GB, Falzone YM et al. Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. Int J Mol Sci. 2020;21(9):3346. doi: 10.3390/ijms21093346. PubMed DOI PMC
Bennett CL, Dastidar SG, Ling SC, Malik B, Ashe T, Wadhwa M, et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol. 2018;136(3):425–443. doi: 10.1007/s00401-018-1852-9. PubMed DOI PMC
Tripolszki K, Török D, Goudenège D, Farkas K, Sulák A, Török N, et al. High-throughput sequencing revealed a novel SETX mutation in a Hungarian patient with amyotrophic lateral sclerosis. Brain Behav. 2017;7(4):e00669. doi: 10.1002/brb3.669. PubMed DOI PMC
Orlacchio A, Babalini C, Borreca A, Patrono C, Massa R, Basaran S, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. 2010;133(Pt 2):591–8. doi: 10.1093/brain/awp325. PubMed DOI PMC
Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet. 1004;10(10):e1004704. doi: 10.1371/journal.pgen.1004704. PubMed DOI PMC
Kenna KP, McLaughlin RL, Byrne S, Elamin M, Heverin M, Kenny EM, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet. 2013;50(11):776–83. doi: 10.1136/jmedgenet-2013-101795. PubMed DOI PMC
Meyer T, Schwan A, Dullinger JS, Brocke J, Hoffmann KT, Nolte CH, et al. Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology. 2005;65(1):141–3. doi: 10.1212/01.wnl.0000167130.31618.0a. PubMed DOI
Münch C, Rolfs A, Meyer T. Heterozygous S44L missense change of the spastin gene in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2008;9(4):251–3. doi: 10.1080/17482960801900172. PubMed DOI