RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
28338727
PubMed Central
PMC5853926
DOI
10.1093/jxb/erx007
PII: 3038177
Knihovny.cz E-zdroje
- Klíčová slova
- Autophagy, EXO70B1, EXO70B2, RIN4, exocyst, plant immunity, secretion,
- MeSH
- akvaporiny genetika metabolismus MeSH
- Arabidopsis metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- buněčná membrána MeSH
- intracelulární signální peptidy a proteiny MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Pseudomonas syringae metabolismus MeSH
- transportní proteiny genetika metabolismus MeSH
- vezikulární transportní proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akvaporiny MeSH
- avrRpt2 protein, Pseudomonas syringae MeSH Prohlížeč
- bakteriální proteiny MeSH
- EXO70B1 protein, Arabidopsis MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- plasma membrane intrinsic protein 2 Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- RIN4 protein, Arabidopsis MeSH Prohlížeč
- transportní proteiny MeSH
- vezikulární transportní proteiny MeSH
The exocyst is a conserved vesicle-tethering complex with principal roles in cell polarity and morphogenesis. Several studies point to its involvement in polarized secretion during microbial pathogen defense. In this context, we have found an interaction between the Arabidopsis EXO70B1 exocyst subunit, a protein which was previously associated with both the defense response and autophagy, and RPM1 INTERACTING PROTEIN 4 (RIN4), the best studied member of the NOI protein family and a known regulator of plant defense pathways. Interestingly, fragments of RIN4 mimicking the cleavage caused by the Pseudomonas syringae effector protease, AvrRpt2, fail to interact strongly with EXO70B1. We observed that transiently expressed RIN4, but not the plasma membrane (PM) protein aquaporin PIP2, recruits EXO70B1 to the PM. Unlike EXO70B1, RIN4 does not recruit the core exocyst subunit SEC6 to the PM under these conditions. Furthermore, the AvrRpt2 effector protease delivered by P. syringae is able to release both RIN4 and EXO70B1 to the cytoplasm. We present a model for how RIN4 might regulate the localization and putative function of EXO70B1 and speculate on the role the AvrRpt2 protease might have in the regulation of this defense response.
Charles University Prague Vinicná 5 Prague Czech Republic
Charles University Prague Viničná 5 Prague Czech Republic
Institute of Experimental Botany Rozvojová 263 Prague Czech Republic
Zobrazit více v PubMed
Afzal AJ, da Cunha L, Mackey D. 2011. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. The Plant Cell 23, 3798–3811. PubMed PMC
Afzal AJ, Kim JH, Mackey D. 2013. The role of NOI-domain containing proteins in plant immune signaling. BMC Genomics 14, 327. PubMed PMC
An Q, Hückelhoven R, Kogel KH, van Bel AJ. 2006. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cellular Microbiology 8, 1009–1019. PubMed
Avila JR, Lee JS, Torii KU. 2015. Co-immunoprecipitation of membrane-bound receptors. Arabidopsis Book 13, e0180. PubMed PMC
Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C. 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology 139, 790–805. PubMed PMC
Ceroni A, Passerini A, Vullo A, Frasconi P. 2006. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Research 34, W177–W181. PubMed PMC
Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Zárský V. 2012. Evolution of the land plant exocyst complexes. Frontiers in Plant Science 3, 159. PubMed PMC
Da Cunha L. 2009. Structural insights into the function of the Arabidopsis protein RIN4, a multi-regulator of plant resistance against bacterial pathogens. PhD Thesis, Ohio State University.
Drdová EJ, Synek L, Pečenková T, Hála M, Kulich I, Fowler JE, Murphy AS, Zárský V. 2013. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. The Plant Journal 73, 709–719. PubMed
Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F. 2015. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiology 169, 1975–1990. PubMed PMC
Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V. 2003. The exocyst complex in plants. Cell Biology International 27, 199–201. PubMed
Eschen-Lippold L, Jiang X, Elmore JM, Mackey D, Shan L, Coaker G, Scheel D, Lee J. 2016. Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiology 171, 2223–2238. PubMed PMC
Fendrych M, Synek L, Pecenková T, Drdová EJ, Sekeres J, de Rycke R, Nowack MK, Zársky V. 2013. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Molecular Biology of the Cell 24, 510–520. PubMed PMC
Ferrè F, Clote P. 2006. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research 34, W182–W185. PubMed PMC
Genre A, Ivanov S, Fendrych M, Faccio A, Zársky V, Bisseling T, Bonfante P. 2012. Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Plant and Cell Physiology 53, 244–255. PubMed
Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. 2010. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. The Plant Journal 64, 355–365. PubMed
Hála M, Cole R, Synek L, et al. 2008. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. The Plant Cell 20, 1330–1345. PubMed PMC
Heider MR, Gu M, Duffy CM, et al. 2016. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nature Structural and Molecular Biology 23, 59–66. PubMed PMC
Heider MR, Munson M. 2012. Exorcising the exocyst complex. Traffic 13, 898–907. PubMed PMC
Hong D, Jeon BW, Kim SY, Hwang JU, Lee Y. 2016. The ROP2–RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytologist 209, 624–635. PubMed
Hruz T, Laule O, Szabo G, et al. 2008. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 2008, 420747. PubMed PMC
Huesmann C, Hoefle C, Hückelhoven R. 2011. ROPGAPs of Arabidopsis limit susceptibility to powdery mildew. Plant Signaling and Behavior 6, 1691–1694. PubMed PMC
Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7, 193–195. PubMed
Katsiarimpa A, Kalinowska K, Anzenberger F, et al. 2013. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. The Plant Cell 25, 2236–2252. PubMed PMC
Kim H-S, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. 2005. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proceedings of the National Academy of Sciences, USA 102, 6496–6501. PubMed PMC
Kulich I, Cole R, Drdová E, Cvrcková F, Soukup A, Fowler J, Zárský V. 2010. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytologist 188, 615–625. PubMed
Kulich I, Pečenková T, Sekereš J, Smetana O, Fendrych M, Foissner I, Höftberger M, Zárský V. 2013. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14, 1155–1165. PubMed
Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. 2015. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiology 168, 120–131. PubMed PMC
Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S. 2007. A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Current Biology 17, 947–952. PubMed
Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AM, Liu CM. 2010. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiology 154, 1819–1830. PubMed PMC
Lin Y, Ding Y, Wang J, et al. 2015. Exocyst-positive organelles and autophagosomes are distinct organelles in plants. Plant Physiology 169, 1917–1932. PubMed PMC
Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. 2009. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biology 7, e1000139. PubMed PMC
Mackey D, Holt BF, 3rd, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754. PubMed
Oda Y, Iida Y, Nagashima Y, Sugiyama Y, Fukuda H. 2015. Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric Golgi-complex 2 protein. Plant and Cell Physiology 56, 277–286. PubMed
Ostertag M, Stammler J, Douchkov D, Eichmann R, Hückelhoven R. 2013. The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Molecular Plant Pathology 14, 230–240. PubMed PMC
Pecenková T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Zársky V. 2011. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. Journal of Experimental Botany 62, 2107–2116. PubMed PMC
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. 2008. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Engineering, Design and Selection 21, 639–644. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682. PubMed PMC
Selote D, Kachroo A. 2010. RIN4-like proteins mediate resistance protein-derived soybean defense against Pseudomonas syringae. Plant Signaling and Behavior 5, 1453–1456. PubMed PMC
Seo DH, Ahn MY, Park KY, Kim EY, Kim WT. 2016. The N-terminal UND motif of the Arabidopsis U-box E3 ligase PUB18 is critical for the negative regulation of ABA-mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit Exo70B1. The Plant Cell 28, 2952–2973. PubMed PMC
Stegmann M, Anderson RG, Ichimura K, Pecenkova T, Reuter P, Žársky V, McDowell JM, Shirasu K, Trujillo M. 2012. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. The Plant Cell 24, 4703–4716. PubMed PMC
Stegmann M, Anderson RG, Westphal L, Rosahl S, McDowell JM, Trujillo M. 2013. The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. Plant Signaling and Behavior 8, e27421. PubMed PMC
Synek L, Schlager N, Eliás M, Quentin M, Hauser MT, Zárský V. 2006. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal 48, 54–72. PubMed PMC
Takemoto D, Jones DA. 2005. Membrane release and destabilization of Arabidopsis RIN4 following cleavage by Pseudomonas syringae AvrRpt2. Molecular Plant-Microbe Interactions 18, 1258–1268. PubMed
Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. 2010. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences, USA 107, 2349–2354. PubMed PMC
Wu B, Guo W. 2015. The exocyst at a glance. Journal of Cell Science 128, 2957–2964. PubMed PMC
Yamaguchi K, Kawasaki T. 2012. Function of Arabidopsis SWAP70 GEF in immune response. Plant Signaling and Behavior 7, 465–468. PubMed PMC
Zárský V, Cvrcková F, Potocký M, Hála M. 2009. Exocytosis and cell polarity in plants—exocyst and recycling domains. New Phytologist 183, 255–272. PubMed
Zárský V, Kulich I, Fendrych M, Pečenková T. 2013. Exocyst complexes multiple functions in plant cells secretory pathways. Current Opinion in Plant Biology 16, 726–733. PubMed
Zhang X, Pumplin N, Ivanov S, Harrison MJ. 2015. EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Current Biology 25, 2189–2195. PubMed
Zhao Y, Liu J, Yang C, et al. 2013. Exo70 generates membrane curvature for morphogenesis and cell migration. Developmental Cell 26, 266–278. PubMed PMC
Zhao T, Rui L, Li J, et al. 2015. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genetics 11, e1004945. PubMed PMC
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
Functional Specialization within the EXO70 Gene Family in Arabidopsis
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation