Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26699541
PubMed Central
PMC4689446
DOI
10.1371/journal.pone.0144616
PII: PONE-D-15-39774
Knihovny.cz E-zdroje
- MeSH
- Ascomycota klasifikace genetika MeSH
- Bayesova věta MeSH
- fungální RNA genetika MeSH
- fylogeneze * MeSH
- geny hub genetika MeSH
- konformace nukleové kyseliny MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- molekulární evoluce MeSH
- pravděpodobnostní funkce MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální RNA MeSH
- mezerníky ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales.
Central European Institute of Technology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Munk A. Danish Pyrenomycetes. A preliminary flora. Dan Bot Ark 1957;17: 1–491.
Barr ME. The ascomycete connection. Mycologia 1983;75: 1–13.
Barr ME. Notes on the Calosphaeriales. Mycologia 1985;77: 549–565.
Réblová M, Mostert L, Gams W, Crous PW. New genera in the Calosphaeriales: Togniniella and its anamorph Phaeocrella, and Calosphaeriophora as anamorph of Calosphaeria . Stud Mycol 2004;50: 533–550.
Vijaykrishna D, Mostert L, Jeewon R, Gams W, Hyde KD et al. Pleurostomophora, an anamorph of Pleurostoma (Calosphaeriales), a new anamorph genus morphologically similar to Phialophora . Stud Mycol 2004;50: 387–395.
Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 2006;54: 1–115.
Damm U, Crous PW, Fourie PH. A fissitunicate ascus mechanism in the Calosphaeriaceae, and novel species of Jattaea and Calosphaeria on Prunus wood. Persoonia 2008;20: 39–52. 10.3767/003158508X313940 PubMed DOI PMC
Réblová M. New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriales. Fung Diver 2011;49: 167−198.
Trouillas FP, Lorber JD, Peduto F, Grant J, Coates WW, Anderson KK et al. First report of Calosphaeria pulchella associated with branch dieback of sweet cherry trees in California. Plant Dis 2010;94: 1167. PubMed
Meyer WM, Dooley JR, Kwon-Chung KJ. Mycotic granuloma caused by Phialophora repens . Am J Clin Pathol 1975;64: 549−555. PubMed
Hironaga M, Nakano K, Yokoyama I, Kitajima J. Phialophora repens, an emerging agent of subcutaneous phaeohyphomycosis in humans. J Clin Microbiol 1989;27: 394−399. PubMed PMC
De Hoog GS, Guarro J, Gené J, Figueras MJ. Hyphomycetes. Genus: Phaeoacremonium, p. 846–852. Atlas of clinical fungi, 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; 2000.
Mhmoud NA, Ahmed SA, Fahal AH, de Hoog GS, Gerrits van den Ende AHG, van de Sande WWJ. Pleurostomophora ochracea, a novel agent of human eumycetoma with yellow grains. J Clin Microbiol 2012;50: 2987–2994. 10.1128/JCM.01470-12 PubMed DOI PMC
Mostert L, Crous PW, Groenewald (Ewald) JZ, Gams W, Summerbell RC. Togninia (Calosphaeriales) is confirmed as teleomorph of Phaeoacremonium by means of morphology, sexual compatibility and DNA phylogeny. Mycologia 2003;95: 646–659. PubMed
Damm U, Mostert L, Crous PW, Fourie PH. Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia 2008;20: 87–102. 10.3767/003158508X324227 PubMed DOI PMC
Essakhi S, Mugnai L, Crous PW, Groenewald JZ, Surico G. Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia 2008;21: 119–134. 10.3767/003158508X374385 PubMed DOI PMC
Graham AB, Johnston PR, Weir BS. Three new Phaeoacremonium species on grapevines in New Zealand. Australas Plant Pathol 2009;38: 1–9.
Gramaje D, Armengol J, Mohammadi H, Banihashemi Z, Mostert L. Novel Phaeoacremonium species associated with Petri disease and esca of grapevines in Iran and Spain. Mycologia 2009;101: 920–929. PubMed
Gramaje D, Agustí-Brisach C, Pérez-Sierra A, Moralejo E, Olmo D, Mostert L et al. Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia 2012;28: 1–13. 10.3767/003158512X626155 PubMed DOI PMC
Gramaje D, Leon M, Pérez-Sierra A, Burgess T, Armengol J. New Phaeocremonium species isolated from sandalwood trees in Western Australia. IMA Fungus 2014;5: 67–77. 10.5598/imafungus.2014.05.01.08 PubMed DOI PMC
Raimondo ML, Lops F, Carlucci A. Phaeoacremonium italicum sp nov., a new species associated with esca of grapevine in southern Italy. Mycologia 2014;106: 1119–1126. 10.3852/14-080 PubMed DOI
Ajello L, Georg LK, Steigbigel RT, Wang CJK. A case of phaeohyphomycosis caused by a new species of Phialophora . Mycologia 1974;66: 490–498. PubMed
Weitzman I, Gordon MA, Henderson RW, Lapa EW. Phialophora parasitica, an emerging pathogen. J Med Vet Mycol 1984;22: 331–339. PubMed
Padhye AA, Davis MS, Baer D, Reddick A, Sinha KK, Ott J. Phaeohyphomycosis caused by Phaeoacremonium inflatipes . J Clin Microbiol 1998;36: 2763–2765. PubMed PMC
Matsui T, Nishimoto K, Udagawa S, Ishihara H, Ono T. Subcutaneous phaeohyphomycosis caused by Phaeoacremonium rubrigenum in an immunosuppressed patient. Jap J Med Mycol 1999;40: 99–102. PubMed
Guarro J, Alves SH, Gené J, Grazziotin NA, Mazzuco R, Dalmagro C Two cases of subcutaneous infection due to Phaeoacremonium spp. J Clin Microbiol 2003;41: 1332–1336. PubMed PMC
Mostert L, Groenewald JZ, Summerbell RC, Robert V, Sutton DA, Padhye AA et al. Species of Phaeoacremonium associated with human infections and environmental reservoirs in infected woody plants. J Clin Microbiol 2005;43: 1752–1767. PubMed PMC
Hausner G, Eyjólfsdóttir GG, Reid J, Klassen GR. Two additional species of the genus Togninia. Can J Bot 1992;70: 724−734.
Gramaje D, Mostert L, Groenewald JZ, Crous PW. Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biology 2015; 119: 759−783. 10.1016/j.funbio.2015.06.004 PubMed DOI
Leontis NB, Westhof E. Analysis of RNA motifs. Curr Opin Struc Biol 2003;13: 300–308. PubMed
Holbrook SR. RNA structure: the long and the short of it. Curr Opin Struc Biol 2005;15: 302−308. PubMed PMC
Leontis NB, Lescoute A, Westhof E. The building blocks and motifs of RNA architecture. Curr Opin Struc Biol 2006;16: 279–287. PubMed PMC
Malloch D. Moulds: their isolation, cultivation and identification Toronto, Ontario: University of Toronto Press; 1981.
Gams W, Hoekstra ES, Aptroot A. CBS course of mycology, 4th edn. Baarn, The Netherlands: Centraalbureau voor Schimmelcultures; 1998.
Online Auction Color Chart Co. The Online auction color chart The new language of color for buyers and sellers. Online Auction Color Chart Company; 2004.
Réblová M, Gams W, Seifert KA. 2011. Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 2011; 68: 163−191. 10.3114/sim.2011.68.07 PubMed DOI PMC
Lee SB, Taylor JW. Isolation of DNA from fungal mycelium and single spores In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds.) PCR protocols: a guide to methods and applications. San Diego: Academic; 1990.
Glass NL, Donaldson GC.Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61: 1323–1330. PubMed PMC
Geiser DM, Frisvad JC, Taylor JW. Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 1998;90: 831–845.
Hall TA. BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95–98.
Gutell RR. Collection of small subunit (16 S- and 16 S-like) ribosomal RNA structures. Nucleic Acids Res 1993;21: 3051–3054. PubMed PMC
Gutell RR, Gray MW, Schnare MN. A compilation of large subunit (23 S and 23 S-like) ribosomal RNA structures. Nucleic Acids Res 1993;21: 3055–3074. PubMed PMC
Réblová M, Réblová K. RNA secondary structure, an important bioinformatics tool to enhance multiple sequence alignment: a case study (Sordariomycetes, Fungi). Mycol Prog 2013;12: 305–319.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22: 2688–2690. PubMed
Stamatakis A, Ludwig T, Meier H. RaxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005;21: 456–463. PubMed
Mason-Gamer RJ, Kellogg EA. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 1996;45: 524–545.
Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17: 754–755. PubMed
Nylander J. MrModeltest2 v. 2.3 (Program for selecting DNA substitution models using PAUP*). Uppsala, Sweden: Evolutionary Biology Centre; 2008.
Rambaut A, Suchard MA, Xie D & Drummond AJ. MCMC Trace Analysis Tool Version v1.6.0. 2013. Available: http://beast.bio.ed.ac.uk/Tracer.
Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 1999;16: 750–759.
Sukosd Z, Knudsen B, Kjems J, Pedersen CNS. PPfold 3.0: Fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 2012;28: 2691–2692. 10.1093/bioinformatics/bts488 PubMed DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31: 3406–3415. PubMed PMC
Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009;25: 1974–1975. 10.1093/bioinformatics/btp250 PubMed DOI PMC
Laing C, Wen D, Wang JTL, Schlick T. Predicting coaxial helical stacking in RNA junctions. Nucleic Acid Res 2012;40: 487–498. 10.1093/nar/gkr629 PubMed DOI PMC
Lamiable A, Barth D, Denise A, Quessette F, Vial S, Westhof E. Automated prediction of three-way junction topological families in RNA secondary structures. Comput Biol Chem 2012;37: 1–5. 10.1016/j.compbiolchem.2011.11.001 PubMed DOI
Ellis JB, Everhart BM. The North American Pyrenomycetes. Newfield, New Jersey; 1892.
Marincowitz S, Crous PW, Groenewald JZ, Wingfield MJ. CBS Biodiversity Series 7 Utrecht, the Netherlands: CBS Fungal Biodiversity Centre; 2008.
Romero AI, Samuels GJ. Studies on xylophilous fungi from Argentina. VI. Ascomycotina on Eucalyptus viminalis (Myrtaceae). Sydowia 1991;43: 228–248.
Nitschke TRJ. Pyrenomycetes Germanici Die Kernpilze Deutschlands Bearbeitet von Dr. Th. Nitschke. Erster Band. Erste Lieferung. i–ii. Germany, Bresalau: Verlag von Eduard Trewendt; 1867.
Saccardo PA. Fungi Italici Autographice delineati. Fascs. 9−12, Tabs. 321–480. Patavii, Italy; 1878.
Barr ME, Rogers JD, Ju MJ. Revisionary studies in the Calosphaeriales. Mycotaxon 1993;48: 529–535.
Berlese AN. Icones Fungorum omnium hucusque cognitorum Volume 3 Padova, Italy; 1900.
Ellis JB, Everhart BM. 1890. New species of fungi from various localities. Proc Acad Nat Sci Philadelphia 1890;42: 219–249.
Hawksworth DL. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 2011;1: 7–20. PubMed PMC
Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA et al. The Amsterdam Declaration on fungal nomenclature. IMA Fungus 2011;2: 105–112. 10.5598/imafungus.2011.02.01.14 PubMed DOI PMC
Wingfield MJ, de Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L et al. One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 2012;212: 604–613. PubMed PMC
Tulasne LR, Tulasne C. Selecta Fungorum Carpologia. Vol. 2. Paris; 1863.
Samuels GJ, Candoussau F. Heterogeneity in the Calosphaeriales: a new Calosphaeria with ramichloridium- and sporothrix-like synanamorphs. Nova Hedw 1996;62: 47–60.
Smith GJD, Liew ECY, Hyde KD. The Xylariales: a monophyletic order containing 7 families. Fung Diver 2003;13: 185–218.
Pirozynski KA. Xenotypa Petrak and Graphostroma gen. nov., segregates from Diatrypaceae. Can J Bot 1974;52: 2129–2135.
Fernández FA, Rogers JD, Ju YM, Huhndorf SM, Umaña L. Paramphisphaeria costaricensis gen. et sp. nov. and Pachytrype rimosa sp. nov. from Costa Rica. Mycologia 2004;96: 175–179. PubMed
Huhndorf SM, Miller AN, Greif M, Samuels GJ. Amplistroma gen. nov. and its relation to Wallrothiella, two genera with globose ascospores and acrodontium-like anamorphs. Mycologia 2009;101: 904–919. PubMed
Réblová M, Mostert L. Romellia is congeneric with Togninia and description of Conidiotheca gen. nov. for one species of this genus with polysporous asci. Mycol Res 2007;111: 299–307. PubMed
Crous PW, Gams W, Wingfield MJ, Van Wyk PS. 1996. Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 1996;88: 786–796.
Rappaz F. Taxonomie et nomenclature des Diatrypacées à asques octosporés (1). Mycol Helv 1987;2: 285–648.
Barr ME. Wegelina a reinstated genus in the Calosphaeriales. Cryptogamie Bryologie Lichénologie 1998;19: 169–173.
Eriksson OE, Hawksworth DL. Notes on ascomycete systematics—Nos 1769–1884. Syst Ascom 1994;13: 183–214.
Lumbsch HT, Huhndorf SM (2010) Myconet Volume 14. Part One. Outline of Ascomycota—2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life Earth Sci 1: 1–64.
Spegazzini CL. Fungi Guaranitici. Pugillus II. Reprint pagination 72 p. [nos 1–202]; 1888.
Ramaley AW. Sulcatistroma nolinae (Calosphaeriales), and its Phialophora-like anamorph. Mycotaxon 2005;93: 139–144.
Eriksson OE. The families of bitunicate ascomycetes. Opera Bot 1981;60: 1–220.
Réblová M. Barbatosphaeria gen. et comb. nov., a new genus for Calosphaeria barbirostris . Mycologia 207;99: 723−732. PubMed
Réblová M, Réblová K, Štěpánek V. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure. Persoonia 2015;35: 21–38. PubMed PMC
Réblová M, Štěpánek V. New fungal genera, Tectonidula gen. nov. for Calosphaeria-like fungi with holoblastic-denticulate conidiogenesis and Natantiella gen. nov. for three species segregated from Ceratostomella . Mycol Res 2009;113: 991–1002 10.1016/j.mycres.2009.06.003 PubMed DOI
Cui J-L, Guo S-X, Dong H, Xiao P. Endophytic Fungi from Dragon’s Blood Specimens: Isolation, Identification, Phylogenetic Diversity and Bioactivity. Phytother Res 2011;25: 1189–1195. 10.1002/ptr.3361 PubMed DOI
Réblová M. Molecular systematics of Ceratostomella sensu lato and morphologically similar fungi. Mycologia 2006;98: 63–93. PubMed
Schol-Schwarz MB. Revision of the genus Phialophora . Persoonia 1970;6: 59–94.
Gams W. Cephalosporium-artige Schimmelpilze (Hyphomycetes) Stuttgart, Germany: G. Fischer; 1971.
Hu DM, Lei C, Hyde KD. Three new ascomycetes from freshwater in China. Mycologia 2012;104: 1478–1489. 10.3852/11-430 PubMed DOI
Tegli S, Bertelli E, Surico G. Sequence analysis of ITS ribosomal DNA in five Phaeoacremonium species and development of a PCR-based assay for the detection of P. chlamydosporum and P. aleophilum in grapevine tissue. Phytopath Mediterr 2000;39: 134−149.
Dupont J, Laloui W, Magnin S, Larignon P, Roquebert MF. Phaeoacremonium viticola, a new species associated with Esca disease of grapevine in France. Mycologia 2000;92: 499–504.
Groenewald M, Kang JC, Crous PW, Gams W. ITS and beta-tubulin phylogeny of Phaeoacremonium, Phaeomoniella spp. Mycol Res 2001;105: 651–657.
Choi J, Lee Y, Chung HS, Koo JS, Yong D, Kim YS et al. Subcutaneous phaeohyphomycosis caused by Phaeoacremonium species in a kidney transplant patient: The first case in Korea. Korean J Lab Med 2011;31: 201–204. 10.3343/kjlm.2011.31.3.201 PubMed DOI PMC
Yan ZH, Rogers SO, Wang CJK. Assessment of Phialophora Species Based on Ribosomal DNA Internal Transcribed Spacers and Morphology. Mycologia 1995;87: 72–83.
Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC. Ecology of microfungal communities in gardens of fungus-growing ants Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 2011;78: 244–255. 10.1111/j.1574-6941.2011.01152.x PubMed DOI
To KKW, Lau SKP, Wu AKL, Lee RA, Ngan AHY, Tsang CCC et al. Phaeoacremonium parasiticum invasive infections and airway colonization characterized by agar block smear and ITS and β-tubulin gene sequencing. Diagn Micr Infec Dis 2012;74: 190–197. PubMed
Takamatsu S, Hirata T, Sato Y. Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). Mycoscience 1998;39: 441–453.
Coleman AW, Maria Preparata R, Mehrotra B, Mai JC. Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations. Protist 1998;149: 135–146. 10.1016/S1434-4610(98)70018-5 PubMed DOI
Coleman AW, van Oppen MJH. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals. J Mol Evol 2008;67: 389–96. 10.1007/s00239-008-9160-y PubMed DOI
Réblová M, Winka K. Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia 2000;92: 939–954
Réblová M, Untereiner W, Réblová K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLOS One 2013. May 28;8(5). PubMed PMC
Gottschling M, Plötner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoagellates. Nucleic Acids Res 2004;32: 307–315. PubMed PMC
Gottschling M, Hilger H, Wolf M, Diane N. Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant Biol 2001;3: 629–636.
Chen CA, Chang CC, Wei NV, Chen CH, Lein YT, Lin HE et al. Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in Scleractinian Corals. Zool Stud 2004;43: 759–771.
Krüger D, Gargas A. The basidiomycete genus Polyporus–an emendation based on phylogeny and putative secondary structure of ribosomal RNA molecules. Feddes Repert 2004;115: 530–546.
Krüger D, Gargas A. Secondary structure of ITS2 rRNA provides taxonomic characters for systematic studies ‒ a case in Lycoperdaceae (Basidiomycota). Mycol Res 2008;112: 316–330. 10.1016/j.mycres.2007.10.019 PubMed DOI
Aguilar C, Sánchez JA. Phylogenetic hypotheses of gorgoniid octocorals according to ITS2 and their predicted RNA secondary structures. Mol Phyl Evol 2007;43: 784–786. PubMed
Bridge PD, Schlitt T, Cannon PF, Buddie AG, Baker M, Borman AM. Domain II hairpin structure in ITS1 sequences as an aid in differentiating recently evolved animal and plant pathogenic fungi. Mycopathologia 2008;166: 1–16. 10.1007/s11046-008-9094-3 PubMed DOI
Ullrich B, Reinhold K, Niehuis O, Misof B. Secondary structure and phylogenetic analysis of the internal transcribed spacers 1 and 2 of bush crickets (Orthoptera: Tettigoniidae: Barbitistini). J Zool Syst Evol Res 2010;48: 219–228.
Noller HF. Structure of ribosomal RNA. Annu Rev Biochem 1984;53: 119–162. PubMed
Noller HF. Ribosomal RNA and translation. Annu Rev Biochem 1991;60: 191–227. PubMed
Leontis NB, Hills MT, Piotto M, Ouporov IE, Malhotra A, Gorenstein DG, Helical Stacking in DNA three-way junctions containing two unpaired pyrimidines: Proton NMR studies. Biophys J 1994;68: 251–265. PubMed PMC
Lilley DM, Clegg RM, Diekmann S, Seeman NC, von Kitzing E, Hagerman PJ. A nomenclature of junctions and branch points in nucleic acids. Nucleic Acids Res 1995;23: 3363–3364. PubMed PMC
Forster AC, Symons RH. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 1987;49: 211–220. PubMed
Wieland M, Gfell M, Hartig J. Expanded hammerhead ribozymes containing addressable three-way junctions. RNA 2009;15: 968–976. 10.1261/rna.1220309 PubMed DOI PMC
Scott WG, Murray JB, Arnold JR, Stoddard BL, Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 1996;274: 2065–2069. PubMed
Batey RT, Gilbert SD, Montange RK. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 2004;432: 411–415. PubMed
Lescoute A, Westhof E. Topology of three-way junctions in folded RNAs. RNA 2006;12: 83–93. PubMed PMC
Walter AE, Turner DH. Sequence dependence of stability for coaxial stacking of RNA helixes with Watson-Crick base paired interfaces. Biochemistry 1994;33: 12715–12719. PubMed
Aalberts DP, Nandagopal N. A two-length-scale polymer theory for RNA loop free energies and helix stacking. RNA 2010;16: 1350–1355. 10.1261/rna.1831710 PubMed DOI PMC
Besseová I, Réblová K, Leontis NB, Šponer J. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Res 2010;38: 6247–6264. 10.1093/nar/gkq414 PubMed DOI PMC
Réblová K, Šponer J, Lankaš F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction Nucleic Acids Res 2012;40: 6290–6303. 10.1093/nar/gks258 PubMed DOI PMC
Yang JH, Usman N, Chartrand P, Cedergren R. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 1992;31: 5005–5009. PubMed