A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32647610
PubMed Central
PMC7325659
DOI
10.1186/s43008-019-0002-x
PII: 2
Knihovny.cz E-zdroje
- Klíčová slova
- Chaetomellales, Erysiphales, Genome phylogeny, Helotiales, Leotiales, Marthamycetales, Phacidiales, Rhytismatales, Thelebolales, Three new taxa,
- Publikační typ
- časopisecké články MeSH
Fungi in the class Leotiomycetes are ecologically diverse, including mycorrhizas, endophytes of roots and leaves, plant pathogens, aquatic and aero-aquatic hyphomycetes, mammalian pathogens, and saprobes. These fungi are commonly detected in cultures from diseased tissue and from environmental DNA extracts. The identification of specimens from such character-poor samples increasingly relies on DNA sequencing. However, the current classification of Leotiomycetes is still largely based on morphologically defined taxa, especially at higher taxonomic levels. Consequently, the formal Leotiomycetes classification is frequently poorly congruent with the relationships suggested by DNA sequencing studies. Previous class-wide phylogenies of Leotiomycetes have been based on ribosomal DNA markers, with most of the published multi-gene studies being focussed on particular genera or families. In this paper we collate data available from specimens representing both sexual and asexual morphs from across the genetic breadth of the class, with a focus on generic type species, to present a phylogeny based on up to 15 concatenated genes across 279 specimens. Included in the dataset are genes that were extracted from 72 of the genomes available for the class, including 10 new genomes released with this study. To test the statistical support for the deepest branches in the phylogeny, an additional phylogeny based on 3156 genes from 51 selected genomes is also presented. To fill some of the taxonomic gaps in the 15-gene phylogeny, we further present an ITS gene tree, particularly targeting ex-type specimens of generic type species. A small number of novel taxa are proposed: Marthamycetales ord. nov., and Drepanopezizaceae and Mniaeciaceae fams. nov. The formal taxonomic changes are limited in part because of the ad hoc nature of taxon and specimen selection, based purely on the availability of data. The phylogeny constitutes a framework for enabling future taxonomically targeted studies using deliberate specimen selection. Such studies will ideally include designation of epitypes for the type species of those genera for which DNA is not able to be extracted from the original type specimen, and consideration of morphological characters whenever genetically defined clades are recognized as formal taxa within a classification.
Blaihofstr aße 4272074 Tübingen Germany
Department of Biostatistics Yale University 135 College St New Haven CT 06510 USA
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Institute of Ecology and Earth Sciences University of Tartu Lai 40 EE 51005 Tartu Estonia
Manaaki Whenua Landcare Research Private Bag 92170 Auckland 1142 New Zealand
Yale Centre for Genome Analysis Yale University Orange CT 06477 USA
Zobrazit více v PubMed
Aberer AJ, Kobert K, Stamatakis A. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Molecular Biology and Evolution. 2014;31:2553–2556. PubMed PMC
Ashrafi Samad, Knapp Dániel G., Blaudez Damien, Chalot Michel, Maciá-Vicente Jose G., Zagyva Imre, Dababat Abdelfattah A., Maier Wolfgang, Kovács Gábor M. Inhabiting plant roots, nematodes, and truffles—Polyphilus, a new helotialean genus with two globally distributed species. Mycologia. 2018;110(2):286–299. PubMed
Banchi E, Ametrano CG, Stanković D, Verardo P, Moretti O, Gabrielli F, et al. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS One. 2018;13(3):e0194489. PubMed PMC
Baral H-O. Vital versus herbarium taxonomy: morphological differences beween living and dead cells of ascomycetes, and their taxonomic implications. Mycotaxon. 1992;44:333–390.
Baral H-O. Nomenclatural novelties. Index Fungorum. 2015;225:1–3.
Baral H-O. Inoperculate discomycetes. pp 157–205. In: Jaklitsch W, Baral H-O, Lücking R, Lumbsch HT, Frey W, editors. Syllabus of plant families: A. Engler’s syllabus der Pflanzenfamilien part 1/2. Stuttgart: Borntraeger; 2016. p. 322.
Baral H-O, De Sloover JR, Huhtinen S, Laukka T, Stenroos S. An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina) Karstenia. 2009;49:1–17.
Baral H-O, Haelewaters D. Rommelaarsia flavovirens gen. et sp. nov. (Helotiales), a new discomycete on Equisetum with a peculiar asexual state. Ascomycete.org. 2015;7:321–330.
Baral H-O, Haelewaters D, Pärtel K. The second international workshop on ascomycete systematics. CBS symposium, 22–24 April, Amsterdam. 2015. A new attempt to classify the families of the Helotiales.
Baschien C, Tsui CK-M, Gulis V, Szewzyk U, Marvanová L. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology. 2013;117:660–672. PubMed
Batista AC, Maia HS. Discomycetes alienigenas (1) Saccardoa. 1960;1:98–102.
Berbee ML. The phylogeny of plant and animal pathogens in the Ascomycota. Physiological and Molecular Plant Pathology. 2001;59:165–187.
Blehert DS. Fungal disease and the developing story of bat white-nose syndrome. PLoS Pathology. 2012;8(7):e1002779. PubMed PMC
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–579. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution. 2000;17:540–552. PubMed
Chen C, Verkley GJ, Sun G, Groenewald JZ, Crous PW. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biology. 2016;120:1291–1322. PubMed
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology. 2016;65:997–1008. PubMed PMC
Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015;31:587–589. PubMed
Crous PV, Hawksworth DL, Wingfield MJ. Identifying and naming plant-pathogenic fungi: past, present and future. Annual Review of Phytopathology. 2015;53:247–267. PubMed
Crous PW, Quaedvlieg W, Hansen K, Hawksworth DL, Groenewald JZ. Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications. IMA Fungus. 2014;5:173–193. PubMed PMC
Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESJ, et al. Fungal planet description sheets: 625–715. Persoonia. 2017;39:270–467. PubMed PMC
Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Gené J, et al. Fungal planet description sheets: 716–784. Persoonia. 2018;40:240–393. PubMed PMC
Damm U, Fourie PH, Crous PW. Coniochaeta (Lecythophora), Collophora gen. Nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia. 2010;24:60–80. PubMed PMC
Davydov EA, Peršoh D, Rambold G. The systematic position of Lasallia caroliniana (Tuck.) Davydov, Peršoh & Rambold comb. nova and considerations on the generic concept of Lasallia (Umbilicariaceae, Ascomycota) Mycological Progress. 2010;9:261–266.
Day MJ, Hall JC, Currah RS. Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala. Mycologia. 2012;104:371–381. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. PubMed PMC
Eriksson OE. Outline of Ascomycota. Myconet. 2005;11:1–113.
Eriksson OE, Winka K. Supraordinal taxa of Ascomycota. Myconet. 1997;1:1–16.
Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Studies in Mycology. 2019;92:195–225. PubMed PMC
Galán R, Checa J, Blanco MN, Platas G, Tena R, et al. Taxonomic position of the genus Bicornispora and the appearance of a new species Bicornispora seditiosa. Mycologia. 2015;107:793–807. PubMed
Gams W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent taxa. Studies in Mycology. 2000;45:187–199.
Gnavi G, Ercole E, Panno L, Vizzini A, Varese GC. Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidonia oceanica based on rDNA data. Singerplus. 2014;3:508. PubMed PMC
Grünig CR, Queloz V, Sieber TN. Structure of diversity in dark septate endophytes: from species to genes. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees: biology and applications, forestry sciences 80. Dordrecht: Springer; 2011.
Gulis V, Baschien C, Marvanová L. Two new Tricladium species from streams in Alaska. Mycologia. 2012;104:1510–1516. PubMed
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. PubMed PMC
Hambleton S, Sigler L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Studies in Mycology. 2005;53:1–27.
Han JG, Hosoya T, Sung GH, Shin HD. Phylogenetic reassessment of (Hyaloscyphaceae sensu lato Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biology. 2014;118:150–167. PubMed
Hawksworth D. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research. 2001;105:1422–1432.
Hawksworth DL, Hibbett DS, Kirk PM, Lücking R. (F-005-006) proposals to permit DNA sequence data to be used as types of names of fungi. IMA Fungus. 2018;9:v–vi. PubMed PMC
Hazard C, Gosling P, Mitchell DT, Doohan FM, Bending G. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiology Ecology. 2014;87:586–600. PubMed
Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, et al. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology. 2014;30:65–76. PubMed
Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, Mena-Portales J, Crous PW, Guarro J. Phylogeny of saprobic microfungi from southern Europe. Studies in Mycology. 2017;86:53–97. PubMed PMC
Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, et al. Sequence-based classification and identification of Fungi. Mycologia. 2016;108:1049–1068. PubMed
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution. 2018;35:518–522. PubMed PMC
Holst-Jensen A, Kohn LM, Schumacher T. Nuclear rDNA phylogeny of the Sclerotiniaceae. Mycologia. 1997;89:885–899.
Hongsanan S, Jeewon R, Purahong W, Xie N, Liu JK, et al. Can we use environmental DNA as holotypes? Fungal Diversity. 2018;92:1–30.
Hosoya T, Han J-G, Sung G-H, Hirayama Y, Tanaka K, et al. Molecular phylogenetic assessment of the genus Hyphodiscus with description of Hyphodiscus hyaloscyphoides sp. nov. Mycological Progress. 2011;10:239–248.
Hosoya T, Sasagawa R, Hosaka K, Gi-Ho S, Hirayama Y, et al. Molecular phylogenetic studies of Lachnum and its allies based on the Japanese material. Mycoscience. 2010;51:170–181.
Hustad VP, Miller AN. Phylogenetic placement of four genera within the Leotiomycetes (Ascomycota) North American Fungi. 2011;6:1–13.
Iturriaga T, LoBuglio KF, Pfister DH. Bulgariella pulla, a Leotiomycete of uncertain placement, with an uncommon type of ascus opening. Mycologia. 2017;109:900–911. PubMed
Johnston Peter R. ChaetoscyphaSyd. reassessed. New Zealand Journal of Botany. 2002;40(4):697–699.
Johnston Peter R., Seifert Keith A., Stone Jeffrey K., Rossman Amy Y., Marvanová Ludmila. recommendations on generic names competing for use in Leotiomycetes (Ascomycota) IMA Fungus. 2014;5(1):91–120. PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TFK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017;14:587–589. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. PubMed PMC
Kauserud H, Mathiesen C, Ohlson M. High diversity of fungi associated with living parts of boreal forest bryophytes. Botany. 2008;86:1326–1333.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Kirk PM, Cannon PF, Minter DW, Stalper JA. Ainsworth and Bisby’s dictionary of the fungi. 10. United Kingdom: CAB International; 2008. p. 771.
Koizumi T, Nara K. Communities of putative ericoid mycorrhizal fungi isolated from alpine dwarf shrubs in Japan. Microbes and Environments. 2017;32:147–153. PubMed PMC
Kühdorf K, Münzenberger B, Begerow D, Gómez-Laurito J, Hüttl RF. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae) Mycorrhiza. 2015;25:109–120. PubMed PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009;10:R25. PubMed PMC
Lantz H, Johnston PR, Park D, Minter DW. Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia. 2011;103:57–74. PubMed
Li H, Durban R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2078. PubMed PMC
Liu Y, Whelen S, Hall B. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. PubMed
LoBuglio KF, Pfister DH. Placement of Medeolaria farlowii in the Leotiomycetes, and comments on sampling within the class. Mycological Progress. 2010;9:36–368.
Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia. 2013;105:237–252. PubMed
Lumbsch HT, Huhndorf SM. Outline of Ascomycota – 2009. Myconet. 2010;14:1–40.
Lydolph MC, Jacobsen J, Arctander P, Gilbert MT, Gilichinsky DA, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Applied and Environmental Microbiology. 2005;71:1012–1017. PubMed PMC
Lόpez-Giráldez F, Townsend JP. PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evolutionary Biology. 2011;11:152. PubMed PMC
Magnes M. Weltmonographie der Triblidiaceae. Bibliotheca Mycologica. 1997;165:1–177.
Malloch D, Sigler L, Hambleton S, Vanderwolf KJ, Gibas CFC, McAlpine DF. Fungi associated with hibernating bats in New Brunswick caves: the genus Leuconeurospora. Botany. 2016;94:1171–1181.
Mitchell JI, Zuccaro A. Sequences, the environment and fungi. Mycologist. 2006;20:62–74.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution. 2015;32:268–274. PubMed PMC
O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology. 2005;71:5544–5550. PubMed PMC
Pärtel K, Baral H-O, Tamm H, Põldmaa K. Evidence for the polyphyly of Encoelia and Encoelioideae with reconsideration of respective families in Leotiomycetes. Fungal Diversity. 2017;82:183–219.
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–1428. PubMed
Quijada L. The way fordward – a formal Leotiomycetes working group? International Mycological Congress, July 16–21, San Juan, Puerto Rico. 2018. SIGS4 taxonomy of the Leotiomycetes – IMC11.
Quijada L, Johnston PR, Cooper JA, Pfister DH. Overview of Phacidiales, including Aotearoamyces gen. nov. on Nothofagus. IMA Fungus. 2018;9:371–382. PubMed PMC
Raja H, Miller A, Shearer C. Freshwater ascomycetes: Aquapoterium pinicola, a new genus and species of Helotiales (Leotiomycetes) from Florida. Mycologia. 2008;100:141–148. PubMed
Rokas A, Krüger D, Carroll SB. Evolution: animal evolution and the molecular signature of radiations compressed in time. Science. 2005;310:1933–1938. PubMed
Sanoamuang N, Jitjak W, Rodtong S, Whalley AJS. Gelatinomyces siamensis gen. sp. nov. (Ascomycota, Leotiomycetes, incertae sedis) on bamboo in Thailand. IMA Fungus. 2013;4:71–87. PubMed PMC
Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, et al. Phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology. 2009;58:224–239. PubMed
Schwessinger B, McDonald M. High quality DNA from fungi for long read sequencing e.g. PacBio, Nanopore MinION, version 4. 2017.
Sieber TN. Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews. 2007;21:75–89.
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed
Sivichai S, Jones EBG, Hywel-Jones NL. Lignicolous freshwater Ascomycota from Thailand: Hymenoscyphus varicosporioides and its Tricladium anamorph. Mycologia. 2003;95:340–346. PubMed
Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, et al. A five-gene phylogeny of Pezizomycotina. Mycologia. 2006;98:1018–1028. PubMed
Stenroos S, Laukka T, Huhtinen S, Döbbeler P, Myllys, et al. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics. 2010;26:281–300. PubMed
Stewart EJ. Growing unculturable bacteria. Journal of Bacteriology. 2012;194:4151–4160. PubMed PMC
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology. 2007;56:564–577. PubMed
Taylor JW, Berbee ML. Dating divergences in the fungal tree of life: review and new analyses. Mycologia. 2006;98:838–849. PubMed
Thomsen PF, Willerslev E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation. 2015;183:4–18.
Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecology and Evolution. 2013;3:1281–1293. PubMed PMC
Townsend JP, Lopez-Giraldez F. Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Systematic Biology. 2010;59:446–457. PubMed
Truong C, Mujic AB, Healy R, Kuhar F, Furci G, et al. How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytologist. 2017;214:913–919. PubMed
Varma A, Oelmüller R. Advanced techniques in soil microbiology (Vol. 11, Soil Biology) Berlin: Springer Berlin Heidelberg; 2007. p. 427.
Wang Z, Binder M, Hibbett DS. A new species of Cudonia based on morphological and molecular data. Mycologia. 2002;94:641–650. PubMed
Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS. Towards a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia. 2007;98:1065–1075. PubMed
Wang Z, Nilsson RH, Lopez-Giraldez F, Zhuang W-Y, Dai Y-C, et al. Tasting soil fungal diversity with earth tongues: phylogenetic test of SATé alignments for environmental ITS data. PLoS One. 2011;6(4):e19039. PubMed PMC
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution. 2017;35:543–548. PubMed PMC
Wijayawardene N, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, et al. Outline of Ascomycota: 2017. Fungal Diversity. 2018;88:167–263.
Wijayawardene N, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, et al. Notes for genera Ascomycota. Fungal Diversity. 2017;86:1–594.
Xi Zhenxiang, Liu Liang, Davis Charles C. The Impact of Missing Data on Species Tree Estimation. Molecular Biology and Evolution. 2015;33(3):838–860. PubMed
Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S, et al. Consideration and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus. 2018;9:167–175. PubMed PMC
Zhao Y-J, Hosoya T, Baral H-O, Hosaka K, Kakishima M. Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon. 2012;122:25–41.
Zhuang WY. Calycellinopsis xishuangbanna gen. Et sp. nov. (Dermateaceae), a petiole-inhabiting fungus from China. Mycotaxon. 1990;38:121–124.
Zhuang WY, Luo J, Zhao P. The fungal genus Calycellinopsis belongs in Helotiaceae not Dermateaceae. Phytotaxa. 2010;3:54–58.
Zijlstra JD, Pieter VH, Baar J, Verkley G, Summerbell RC, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Studies in Mycology. 2005;53:147–162.
Fungal Planet description sheets: 1697-1780
Fungal Planet description sheets: 1550-1613
Ten decadal advances in fungal biology leading towards human well-being
Genera of phytopathogenic fungi: GOPHY 4
Fungal Planet description sheets: 1182-1283
Notes on Trochila (Ascomycota, Leotiomycetes), with new species and combinations
Fungal Planet description sheets: 1112-1181
Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes