A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration

. 2020 ; 11 () : 2148. [epub] 20200917

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33042126

Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.

Zobrazit více v PubMed

Lanfranca MP, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med. (2016) 94:523–34. 10.1007/s00109-016-1391-6 PubMed DOI PMC

Mühl H, Scheiermann P, Bachmann M, Härdle L, Heinrichs A, Pfeilschifter J. IL-22 in tissue-protective therapy. Br J Pharmacol. (2013) 169:761–71. 10.1111/bph.12196 PubMed DOI PMC

Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmu Rev. (2017) 16:1209–18. 10.1016/j.autrev.2017.10.004 PubMed DOI

Hernandez P, Gronke K, Diefenbach A. A catch-22: interleukin-22 and cancer. Eur J Immunol. (2018) 48:15–31. 10.1002/eji.201747183 PubMed DOI

Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol. (2000) 164:1814–9. 10.4049/jimmunol.164.4.1814 PubMed DOI

Bleicher L, de Moura PR, Watanabe L, Colau D, Dumoutier L, Renauld JC, et al. . Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS letters. (2008) 582:2985–92. 10.1016/j.febslet.2008.07.046 PubMed DOI

Logsdon NJ, Jones BC, Allman JC, Izotova L, Schwartz B, Pestka S, et al. . The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Mol Biol. (2004) 342:503–14. 10.1016/j.jmb.2004.07.069 PubMed DOI

Nagem RA, Colau D, Dumoutier L, Renauld JC, Ogata C, Polikarpov I. Crystal structure of recombinant human interleukin-22. Structure. (2002) 10:1051–62. 10.1016/S0969-2126(02)00797-9 PubMed DOI

Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Ann Rev Immunol. (2011) 29:71–109. 10.1146/annurev-immunol-031210-101312 PubMed DOI

Dumoutier L, Van Roost E, Colau D, Renauld J-C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci USA. (2000) 97:10144–9. 10.1073/pnas.170291697 PubMed DOI PMC

Nagem RA, Lucchesi KW, Colau D, Dumoutier L, Renauld JC, Polikarpov I. Crystallization and synchrotron X-ray diffraction studies of human interleukin-22. Acta Crystallogr Sec D. (2002) 58:529–30. 10.1107/S0907444902001063 PubMed DOI

Logsdon NJ, Jones BC, Josephson K, Cook J, Walter MR. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J Interf Cytokine Res. (2002) 22:1099–112. 10.1089/10799900260442520 PubMed DOI

Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, et al. . Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2–4 and IL-22R. J Biol Chem. (2000) 275:31335–9. 10.1074/jbc.M005304200 PubMed DOI

Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly P, et al. . Identification of the functional interleukin-22 (IL-22) receptor complex the Il-10r2 chain (Il-10rβ) is a common chain of both the Il-10 And Il-22 (Il-10-related T cell-derived inducible factor, Il-tif) receptor complexes. J Biol Chem. (2001) 276:2725–32. 10.1074/jbc.M007837200 PubMed DOI

Langer JA, Cutrone EC, Kotenko S. The Class II cytokine receptor (CRF2) family: overview and patterns of receptor–ligand interactions. Cytokine Growth Factor Rev. (2004) 15:33–48. 10.1016/j.cytogfr.2003.10.001 PubMed DOI

Kotenko SV, Langer JA. Full house: 12 receptors for 27 cytokines. Int Immunopharmacol. (2004) 4:593–608. 10.1016/j.intimp.2004.01.003 PubMed DOI

Jones BC, Logsdon NJ, Walter MR. Crystallization and preliminary X-ray diffraction analysis of human IL-22 bound to the extracellular IL-22R1 chain. Acta Crystallogr Sec F. (2008) 64:266–9. 10.1107/S1744309108004752 PubMed DOI PMC

Jones BC, Logsdon NJ, Walter MR. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure. (2008) 16:1333–44. 10.1016/j.str.2008.06.005 PubMed DOI PMC

Yoon SI, Jones BC, Logsdon NJ, Harris BD, Deshpande A, Radaeva S, et al. . Structure and mechanism of receptor sharing by the IL-10R2 common chain. Structure. (2010) 18:638–48. 10.1016/j.str.2010.02.009 PubMed DOI PMC

Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld J-C. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line pathways that are shared with and distinct from IL-10. J Biol Chem. (2002) 277:33676–82. 10.1074/jbc.M204204200 PubMed DOI

Mitra A, Raychaudhuri SK, Raychaudhuri SP. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine. (2012) 60:38–42. 10.1016/j.cyto.2012.06.316 PubMed DOI

Dumoutier L, Lejeune D, Colau D, Renauld JC. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol. (2001) 166:7090–5. 10.4049/jimmunol.166.12.7090 PubMed DOI

Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, et al. . Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol. (2001) 166:7096–103. 10.4049/jimmunol.166.12.7096 PubMed DOI

de Moura PR, Watanabe L, Bleicher L, Colau D, Dumoutier L, Lemaire MM, et al. . Crystal structure of a soluble decoy receptor IL-22BP bound to interleukin-22. FEBS Lett. (2009) 583:1072–7. 10.1016/j.febslet.2009.03.006 PubMed DOI

Martin JC, Bériou G, Heslan M, Bossard C, Jarry A, Abidi A, et al. . IL-22BP is produced by eosinophils in human gut and blocks IL-22 protective actions during colitis. Mucosal Immunol. (2016) 9:539–49. 10.1038/mi.2015.83 PubMed DOI

Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, et al. . IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. (2012) 491:259–63. 10.1038/nature11535 PubMed DOI PMC

Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+ T cells: differentiation and functions. Clin Dev Immunol. (2012) 2012:925135. 10.1155/2012/925135 PubMed DOI PMC

Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. (2002) 168:5397–402. 10.4049/jimmunol.168.11.5397 PubMed DOI

Liang SC, Tan X-Y, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. . Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. (2006) 203:2271–9. 10.1084/jem.20061308 PubMed DOI PMC

Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. (2006) 16:902–7. 10.1038/sj.cr.7310106 PubMed DOI

Abikhair M, Mitsui H, Yanofsky V, Roudiani N, Ovits C, Bryan T, et al. . Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22. JCI Insight. (2016) 1:e86434. 10.1172/jci.insight.86434 PubMed DOI PMC

Basu R, O'Quinn DB, Silberger DJ, Schoeb TR, Fouser L, Ouyang W, et al. . Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity. (2012) 37:1061–75. 10.1016/j.immuni.2012.08.024 PubMed DOI PMC

Doulabi H, Rastin M, Shabahangh H, Maddah G, Abdollahi A, Nosratabadi R, et al. . Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed Pharmacother. (2018) 103:1101–6. 10.1016/j.biopha.2018.04.147 PubMed DOI

Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nature Immunol. (2009) 10:857–63. 10.1038/ni.1767 PubMed DOI

Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. . Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Investig. (2009) 119:3573–85. 10.1172/JCI40202 PubMed DOI PMC

Yang XY, Wang HY, Zhao XY, Wang LJ, Lv QH, Wang QQ. Th22, but not Th17 might be a good index to predict the tissue involvement of systemic lupus erythematosus. J Clin Immunol. (2013) 33:767–74. 10.1007/s10875-013-9878-1 PubMed DOI

Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, et al. . Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. (2010) 107:5943–8. 10.1073/pnas.0911755107 PubMed DOI PMC

Esser C, Rannug A, Stockinger B. The aryl hydrocarbon receptor in immunity. Trends Immunol. (2009) 30:447–54. 10.1016/j.it.2009.06.005 PubMed DOI

Budda SA, Girton A, Henderson JG, Zenewicz LA. Transcription factor HIF-1α controls expression of the cytokine IL-22 in CD4 T cells. J Immunol. (2016) 197:2646–52. 10.4049/jimmunol.1600250 PubMed DOI

Witte E, Witte K, Warszawska K, Sabat R, Wolk K. Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev. (2010) 21:365–79. 10.1016/j.cytogfr.2010.08.002 PubMed DOI

Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, et al. . Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. (2008) 29:958–70. 10.1016/j.immuni.2008.11.001 PubMed DOI

Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. . AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. (2012) 13:144–51. 10.1038/ni.2187 PubMed DOI PMC

Qiu J, Heller JJ, Guo X, Zong-ming EC, Fish K, Fu YX, et al. . The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. (2012) 36:92–104. 10.1016/j.immuni.2011.11.011 PubMed DOI PMC

Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity. (2004) 21:241–54. 10.1016/j.immuni.2004.07.007 PubMed DOI

Whittington HA, Armstrong L, Uppington KM, Millar AB. Interleukin-22: a potential immunomodulatory molecule in the lung. Am J Respir Cell Mol Biol. (2004) 31:220–6. 10.1165/rcmb.2003-0285OC PubMed DOI

Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, et al. . IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Investig. (2008) 118:534–44. 10.1172/JCI33194 PubMed DOI PMC

Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, et al. . IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. J Mol Med. (2009) 87:523–36. 10.1007/s00109-009-0457-0 PubMed DOI

Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, et al. . Interleukin-22 drives endogenous thymic regeneration in mice. Science. (2012) 336:91–5. 10.1126/science.1218004 PubMed DOI PMC

Aggarwal S, Xie MH, Maruoka M, Foster J, Gurney AL. Acinar cells of the pancreas are a target of interleukin-22. J Interferon Cytokine Res. (2001) 21:1047–53. 10.1089/107999001317205178 PubMed DOI

Shioya M, Andoh A, Kakinoki S, Nishida A, Fujiyama Y. Interleukin 22 receptor 1 expression in pancreas islets. Pancreas. (2008) 36:197–9. 10.1097/MPA.0b013e3181594258 PubMed DOI

Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN, VR SK, et al. . Toll-like receptor 4–induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol. (2014) 25:978–89. 10.1681/ASN.2013050528 PubMed DOI PMC

Zhang W, Dang E, Shi X, Jin L, Feng Z, Hu L, et al. . The pro-inflammatory cytokine IL-22 up-regulates keratin 17 expression in keratinocytes via STAT3 and ERK1/2. PLoS ONE. (2012) 7:e40797. 10.1371/journal.pone.0040797 PubMed DOI PMC

Leung JM, Davenport M, Wolff MJ, Wiens KE, Abidi WM, Poles MA, et al. . IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol. (2014) 7:124–33. 10.1038/mi.2013.31 PubMed DOI PMC

Murano T, Okamoto R, Ito G, Nakata T, Hibiya S, Shimizu H, et al. . Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells. Biochem Biophys Res Commun. (2014) 443:840–6. 10.1016/j.bbrc.2013.12.061 PubMed DOI

Nagalakshmi ML, Rascle A, Zurawski S, Menon S, de Waal Malefyt R. Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol. (2004) 4:679–91. 10.1016/j.intimp.2004.01.008 PubMed DOI

Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, et al. . The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. (2007) 178:2229–40. 10.4049/jimmunol.178.4.2229 PubMed DOI

Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, et al. . Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. (2012) 56:1150–9. 10.1002/hep.25744 PubMed DOI PMC

Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, et al. . Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology. (2005) 129:969–84. 10.1053/j.gastro.2005.06.071 PubMed DOI

Cho K-A, Suh JW, Lee KH, Kang JL, Woo S-Y. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. (2011) 24:147–58. 10.1093/intimm/dxr110 PubMed DOI

Bansal G, Das D, Hsieh C-Y, Wang Y-H, Gilmore BA, Wong C-M, et al. . IL-22 activates oxidant signaling in pulmonary vascular smooth muscle cells. Cell Signal. (2013) 25:2727–33. 10.1016/j.cellsig.2013.09.001 PubMed DOI PMC

Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V, et al. . Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis. J Immunol. (2010) 184:5263–70. 10.4049/jimmunol.0902464 PubMed DOI

Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, et al. . IL-22–producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17–producing TH17 T cells. J Allergy Clin Immunol. (2009) 123:1244–52.e2. 10.1016/j.jaci.2009.03.041 PubMed DOI PMC

Leyva-Castillo JM, Yoon J, Geha RS. IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. J Allergy Clin Immunol. (2019) 143:619–30. e7. 10.1016/j.jaci.2018.05.032 PubMed DOI PMC

Fukaya T, Fukui T, Uto T, Takagi H, Nasu J, Miyanaga N, et al. . Pivotal role of IL-22 binding protein in the epithelial autoregulation of interleukin-22 signaling in the control of skin inflammation. Front Immunol. (2018) 9:1418. 10.3389/fimmu.2018.01418 PubMed DOI PMC

Ito T, Hirose K, Saku A, Kono K, Takatori H, Tamachi T, et al. . IL-22 induces Reg3γ and inhibits allergic inflammation in house dust mite–induced asthma models. J Exp Med. (2017) 214:3037–50. 10.1084/jem.20162108 PubMed DOI PMC

Hsueh Y-H, Chang Y-N, Loh C-E, Gershwin ME, Chuang Y-H. AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun. (2016) 66:89–97. 10.1016/j.jaut.2015.10.005 PubMed DOI PMC

Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. (2007) 27:647–59. 10.1016/j.immuni.2007.07.023 PubMed DOI PMC

Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. (2008) 29:947–57. 10.1016/j.immuni.2008.11.003 PubMed DOI PMC

Wolk K, Warszawska K, Hoeflich C, Witte E, Schneider-Burrus S, Witte K, et al. . Deficiency of IL-22 contributes to a chronic inflammatory disease: pathogenetic mechanisms in acne inversa. J Immunol. (2011) 186:1228–39. 10.4049/jimmunol.0903907 PubMed DOI

Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunol. (2018) 7:e1017. 10.1002/cti2.1017 PubMed DOI PMC

Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nature Rev Immunol. (2012) 12:503. 10.1038/nri3228 PubMed DOI PMC

Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. . IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. (2008) 14:275. 10.1038/nm1710 PubMed DOI PMC

Kim C, Nazli A, Rojas O, Chege D, Alidina Z, Huibner S, et al. . A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol. (2012) 5:670. 10.1038/mi.2012.72 PubMed DOI

Thibodeau V, Fourcade L, Labbé A-C, Alary M, Guédou F, Poudrier J, et al. . Highly-exposed HIV-1 seronegative female commercial sex workers sustain in their genital mucosa increased frequencies of tolerogenic myeloid and regulatory T-cells. Sci Rep. (2017) 7:43857. 10.1038/srep43857 PubMed DOI PMC

Budda SA, Zenewicz LA. IL-22 deficiency increases CD4 T cell responses to mucosal immunization. Vaccine. (2018) 36:3694–700. 10.1016/j.vaccine.2018.05.011 PubMed DOI PMC

Ngo VL, Abo H, Maxim E, Harusato A, Geem D, Medina-Contreras O, et al. . A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad SciUSA. (2018) 115:E5076–85. 10.1073/pnas.1718902115 PubMed DOI PMC

Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, et al. . IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. (2006) 36:1309–23. 10.1002/eji.200535503 PubMed DOI

Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, et al. . STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. (2009) 206:1465–72. 10.1084/jem.20082683 PubMed DOI PMC

Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. . The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science. (2011) 334:255–8. 10.1126/science.1209791 PubMed DOI PMC

Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J Exp Med. (2007) 204:1891–900. 10.1084/jem.20070563 PubMed DOI PMC

Li Y, Wang J, Li Y, Wu H, Zhao S, Yu Q. Protecting intestinal epithelial cells against deoxynivalenol and E. coli damage by recombinant porcine IL-22. Vet Microbiol. (2019) 231:154–9. 10.1016/j.vetmic.2019.02.027 PubMed DOI PMC

Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, et al. . Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. (2012) 336:1321–5. 10.1126/science.1222551 PubMed DOI PMC

Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, et al. . Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis. (2014) 210:493–503. 10.1093/infdis/jiu106 PubMed DOI

Trevejo-Nunez G, Chen K, Kolls JK. C34 mechanisms of host defense in bacterial and fungal infections: role of the Il-22 binding protein during acute and chronic lung infection. Am Jo Respi Crit Care Med. (2017) 195:A5263 10.1164/ajrccm-conference.2017.C34 DOI

Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LV, et al. . IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol. (2009) 183:6639–45. 10.4049/jimmunol.0902587 PubMed DOI

Treerat P, Prince O, Cruz-Lagunas A, Muñoz-Torrico M, Salazar-Lezama M, Selman M, et al. . Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol. (2017) 10:1069. 10.1038/mi.2017.15 PubMed DOI PMC

Dhiman R, Venkatasubramanian S, Paidipally P, Barnes PF, Tvinnereim A, Vankayalapati R. Interleukin 22 inhibits intracellular growth of Mycobacterium tuberculosis by enhancing calgranulin A expression. J Infect Dis. (2014) 209:578–87. 10.1093/infdis/jit495 PubMed DOI PMC

Schulz SM, Köhler G, Schütze N, Knauer J, Straubinger RK, Chackerian AA, et al. . Protective immunity to systemic infection with attenuated Salmonella enterica serovar enteritidis in the absence of IL-12 is associated with IL-23-dependent IL-22, but not IL-17. J Immunol. (2008) 181:7891–901. 10.4049/jimmunol.181.11.7891 PubMed DOI

Forbester JL, Lees EA, Goulding D, Forrest S, Yeung A, Speak A, et al. . Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells. Proc Natl Acad Sci USA. (2018) 115:10118–23. 10.1073/pnas.1811866115 PubMed DOI PMC

Siegemund S, Schütze N, Schulz S, Wolk K, Nasilowska K, Straubinger RK, et al. . Differential IL-23 requirement for IL-22 and IL-17A production during innate immunity against Salmonella enterica serovar Enteritidis. Int Immunol. (2009) 21:555–65. 10.1093/intimm/dxp025 PubMed DOI

Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A, et al. . Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol. (2010) 184:4378–90. 10.4049/jimmunol.0903416 PubMed DOI PMC

Graham AC, Carr KD, Sieve AN, Indramohan M, Break TJ, Berg RE. IL-22 production is regulated by IL-23 during Listeria monocytogenes infection but is not required for bacterial clearance or tissue protection. PLoS ONE. (2011) 6:e17171 10.1371/journal.pone.0017171 PubMed DOI PMC

Weber GF, Schlautkötter S, Kaiser-Moore S, Altmayr F, Holzmann B, Weighardt H. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect Immun. (2007) 75:1690–7. 10.1128/IAI.01564-06 PubMed DOI PMC

Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, et al. . Dectin-1 dependent IL-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun. (2011) 80:410–7. 10.1128/IAI.05939-11 PubMed DOI PMC

Reeder KM, Mackel JJ, Godwin MS, Dunaway CW, Blackburn JP, Patel RP, et al. . Role of common γ-chain cytokines in lung interleukin-22 regulation after acute exposure to Aspergillus fumigatus. Infect Immunity. (2018) 86:e00157–18. 10.1128/IAI.00157-18 PubMed DOI PMC

Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, et al. . Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur J Immunol. (2009) 39:1472–9. 10.1002/eji.200838811 PubMed DOI

De Luca A, Zelante T, D'angelo C, Zagarella S, Fallarino F, Spreca A, et al. . IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. (2010) 3:361–73. 10.1038/mi.2010.22 PubMed DOI

Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. (2010) 185:5453–62. 10.4049/jimmunol.1001153 PubMed DOI PMC

Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, et al. . Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Expe Med. (2009) 206:299–311. 10.1084/jem.20081463 PubMed DOI PMC

Reeder KM, Dunaway CW, Blackburn JP, Yu Z, Matalon S, Hastie AT, et al. . The common γ-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunol. (2018) 11:1352–62. 10.1038/s41385-018-0028-1 PubMed DOI PMC

Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, et al. . The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol. (2012) 189:3653–60. 10.4049/jimmunol.1201797 PubMed DOI PMC

Yi P, Liang Y, Yuan DM, Jie Z, Kwota Z, Chen Y, et al. . A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. Sci Rep. (2017) 7:3857. 10.1038/s41598-017-04260-0 PubMed DOI PMC

Paget C, Ivanov S, Fontaine J, Renneson J, Blanc F, Pichavant M, et al. . Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza a virus infection potential role in protection against lung epithelial damages. J Biol Chem. (2012) 287:8816–29. 10.1074/jbc.M111.304758 PubMed DOI PMC

Kumar P, Thakar MS, Ouyang W, Malarkannan S. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol. (2013) 6:69–82. 10.1038/mi.2012.49 PubMed DOI PMC

Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI, Fattman CL, et al. . IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol. (2013) 182:1286–96. 10.1016/j.ajpath.2012.12.007 PubMed DOI PMC

Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Fernandez EM, et al. . Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol. (2013) 87:6911–24. 10.1128/JVI.02943-12 PubMed DOI PMC

Barthelemy A, Sencio V, Soulard D, Deruyter L, Faveeuw C, Le Goffic R, et al. . Interleukin-22 immunotherapy during severe influenza enhances lung tissue integrity and reduces secondary bacterial systemic invasion. Infect Immun. (2018) 86:e00706-17. 10.1128/IAI.00706-17 PubMed DOI PMC

Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD, et al. . Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. (2012) 5:646–57. 10.1038/mi.2012.38 PubMed DOI PMC

Chebli K, Papon L, Paul C, Garcel A, Campos N, Scherrer D, et al. . The anti-HIV candidate ABX464 dampens intestinal inflammation by triggering IL-22 production in activated macrophages. Sci Rep. (2017) 7:4860. 10.1038/s41598-017-04071-3 PubMed DOI PMC

Zhang B, Chassaing B, Shi Z, Uchiyama R, Zhang Z, Denning TL, et al. . Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science. (2014) 346:861–5. 10.1126/science.1256999 PubMed DOI PMC

Hernández PP, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. . Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. (2015) 16:698–707. 10.1038/ni.3180 PubMed DOI PMC

Su L, Liao Q, Wu Y, Chen X. Kaposi's sarcoma-associated herpesvirus-encoded LANA down-regulates IL-22R1 expression through a cis-acting element within the promoter region. PLoS ONE. (2011) 6:e19106. 10.1371/journal.pone.0019106 PubMed DOI PMC

Wang P, Bai F, Zenewicz LA, Dai J, Gate D, Cheng G, et al. . IL-22 signaling contributes to West Nile encephalitis pathogenesis. PLoS ONE. (2012) 7:e44153. 10.1371/journal.pone.0044153 PubMed DOI PMC

Yi P, Liang Y, Chen J, Hood B, Azar S, Rossi S, et al. IL-22 signaling contributes to modulate the pathogenesis of Zika virus infection. J Immunol. (2017) 198(Suppl. 1):158.8 Available online at: https://www.jimmunol.org/content/198/1_Supplement/158.8.abstract

Xiang X, Gui H, King NJ, Cole L, Wang H, Xie Q, et al. . IL-22 and non-ELR-CXC chemokine expression in chronic hepatitis B virus-infected liver. Immunol Cell Biol. (2012) 90:611–9. 10.1038/icb.2011.79 PubMed DOI

Foster RG, Golden-Mason L, Rutebemberwa A, Rosen HR. Interleukin (IL)-17/IL-22-producing T cells enriched within the liver of patients with chronic hepatitis C viral (HCV) infection. Digest Dis Sci. (2012) 57:381–9. 10.1007/s10620-011-1997-z PubMed DOI

Yi P, Liang Y, Yuan D, Jie Z, Kwota Z, Cong Y, et al. PI3K/mTOR-dependent IL-22 production modulates polyfunctional T cell responses in viral hepatitis. J Immunol. (2016) 196 (Suppl. 1):196.12 Available online at: https://www.jimmunol.org/content/196/1_Supplement/196.12.short PubMed

Cobleigh MA, Robek MD. Protective and pathological properties of IL-22 in liver disease: implications for viral hepatitis. Am J Pathol. (2013) 182:21–8. 10.1016/j.ajpath.2012.08.043 PubMed DOI

Feng D, Kong X, Weng H, Park O, Wang H, Dooley S, et al. . Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. Gastroenterology. (2012) 143:188–98. 10.1053/j.gastro.2012.03.044 PubMed DOI PMC

Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, et al. . A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology. (2011) 141:1897–906. 10.1053/j.gastro.2011.06.051 PubMed DOI PMC

Jie Z, Liang Y, Yi P, Tang H, Soong L, Cong Y, et al. . Retinoic acid regulates immune responses by promoting IL-22 and modulating S100 proteins in viral hepatitis. J Immunol. (2017) 198:3448–60. 10.4049/jimmunol.1601891 PubMed DOI PMC

Mo R, Wang P, Lai R, Li F, Liu Y, Jiang S, et al. . Persistently elevated circulating Th22 reversely correlates with prognosis in HBV-related acute-on-chronic liver failure. J Gastroenterol Hepatol. (2017) 32:677–86. 10.1111/jgh.13537 PubMed DOI

Zhao J, Zhang Z, Luan Y, Zou Z, Sun Y, Li Y, et al. . Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology. (2014) 59:1331–42. 10.1002/hep.26916 PubMed DOI PMC

Park O, Wang H, Weng H, Feigenbaum L, Li H, Yin S, et al. . In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology. (2011) 54:252–61. 10.1002/hep.24339 PubMed DOI PMC

Dambacher J, Beigel F, Zitzmann K, Heeg MH, Göke B, Diepolder HM, et al. . The role of interleukin-22 in hepatitis C virus infection. Cytokine. (2008) 41:209–16. 10.1016/j.cyto.2007.11.016 PubMed DOI

Hennig BJ, Frodsham AJ, Hellier S, Knapp S, Yee LJ, Wright M, et al. . Influence of IL-10RA and IL-22 polymorphisms on outcome of hepatitis C virus infection. Liver Inter. (2007) 27:1134–43. 10.1111/j.1478-3231.2007.01518.x PubMed DOI

Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, et al. . Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. J Investig Dermatol. (2015) 135:2862–70. 10.1038/jid.2015.278 PubMed DOI

McGee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. . IL-22 promotes fibroblast-mediated wound repair in the skin. J Investig Dermatol. (2013) 133:1321–9. 10.1038/jid.2012.463 PubMed DOI PMC

Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. (2005) 174:3695–702. 10.4049/jimmunol.174.6.3695 PubMed DOI

Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. . Interleukin-22, a TH 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. (2007) 445:648–51. 10.1038/nature05505 PubMed DOI

Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of TH17 cells and associated cytokines in wound healing, tissue regeneration, and carcinogenesis. Int J Mol Sci. (2017) 18:1033. 10.3390/ijms18051033 PubMed DOI PMC

Zenewicz LA, Yin X, Wang G, Elinav E, Hao L, Zhao L, et al. . IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol. (2013) 190:5306–12. 10.4049/jimmunol.1300016 PubMed DOI PMC

Zhou H, Xie G, Mao Y, Zhou K, Ren R, Zhao Q, et al. . Enhanced regeneration and hepatoprotective effects of interleukin 22 fusion protein on a predamaged liver undergoing partial hepatectomy. J Immunol Res. (2018) 2018:5241526. 10.1155/2018/5241526 PubMed DOI PMC

Brand S, Dambacher J, Beigel F, Zitzmann K, Heeg MH, Weiss TS, et al. . IL-22-mediated liver cell regeneration is abrogated by SOCS-1/3 overexpression in vitro. Am J Physiol Gastrointest Liver Physiol. (2007) 292:G1019–28. 10.1152/ajpgi.00239.2006 PubMed DOI

Ren X, Hu B, Colletti LM. IL-22 is involved in liver regeneration after hepatectomy. Am J Physiol Gastrointest Liver Physiol. (2010) 298:G74–80. 10.1152/ajpgi.00075.2009 PubMed DOI PMC

Lindemans CA, Calafiore M, Mertelsmann AM, O'connor MH, Dudakov JA, Jenq RR, et al. . Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. (2015) 528:560–4. 10.1038/nature16460 PubMed DOI PMC

Lindemans CA, Calafiore M, O'Connor M, Mertelsmann A, van den Brink MR, Hanash AM. Interleukin-22 treatment promotes intestinal stem cell-mediated epithelial regeneration via Stat3 activation and reduces GI Gvhd. Biol Blood Marrow Transpl. (2016) 22:S56–7. 10.1016/j.bbmt.2015.11.345 DOI

Pan B, Zhang F, Lu Z, Li L, Shang L, Xia F, et al. . Donor T-cell-derived interleukin-22 promotes thymus regeneration and alleviates chronic graft-versus-host disease in murine allogeneic hematopoietic cell transplant. Int Immunopharmacol. (2019) 67:194–201. 10.1016/j.intimp.2018.12.023 PubMed DOI

Gnirck AC, Wunderlich M, Becker M, Xiong T, Weinert E, Meyer-Schwesinger C, et al. . Endogenous IL-22 is dispensable for experimental glomerulonephritis. Am J Physiol Renal Physiol. (2019) 316:F712–22. 10.1152/ajprenal.00303.2018 PubMed DOI

Hill T, Krougly O, Nikoopour E, Bellemore S, Lee-Chan E, Fouser LA, et al. . The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg genes. Cell Regener. (2013) 2:2. 10.1186/2045-9769-2-2 PubMed DOI PMC

Kolumam G, Wu X, Lee WP, Hackney JA, Zavala-Solorio J, Gandham V, et al. . IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. PLoS ONE. (2017) 12:e0170639. 10.1371/journal.pone.0170639 PubMed DOI PMC

Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, Peralta S, et al. . Interleukin-22 and interleukin-22–producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthr Rheum. (2012) 64:1869–78. 10.1002/art.34355 PubMed DOI

Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol. (2011) 23:159–63. 10.1093/intimm/dxr001 PubMed DOI

Tiveron LR, da Silva IR, da Silva MV, Peixoto AB, Rodrigues DB, Rodrigues Jr V. High in situ mRNA levels of IL-22, TFG-β, and ARG-1 in keloid scars. Immunobiology. (2018) 223:812–7. 10.1016/j.imbio.2018.08.010 PubMed DOI

Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, et al. . IL-22+ CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. (2014) 40:772–84. 10.1016/j.immuni.2014.03.010 PubMed DOI PMC

Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. (2018) 53:465–74. 10.1007/s00535-017-1401-7 PubMed DOI PMC

Yuksel ES, Topal F, Gür Ö, Topal F, Karahanlý C, Uran B. IL-17 and IL-22 in colitis associated colorectal cancer in mice. Medical Science. 23:375–380.

Atreya I, Kindermann M, Wirtz S. Innate lymphoid cells in intestinal cancer development. Semin Immunol. (2019) 41:101267. 10.1016/j.smim.2019.02.001 PubMed DOI

Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, et al. . Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. (2013) 210:917–31. 10.1084/jem.20122308 PubMed DOI PMC

Wu T, Cui L, Liang Z, Liu C, Liu Y, Li J. Elevated serum IL-22 levels correlate with chemoresistant condition of colorectal cancer. Clin Immunol. (2013) 147:38. 10.1016/j.clim.2013.02.007 PubMed DOI

Fukui H, Sekikawa A, Tanaka H, Fujimori Y, Katake Y, Fujii S, et al. . DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflammatory Bowel Dis. (2011) 17:1177–88. 10.1002/ibd.21473 PubMed DOI

Sun D, Lin Y, Hong J, Chen H, Nagarsheth N, Peng D, et al. . Th22 cells control colon tumorigenesis through STAT3 and polycomb repression complex 2 signaling. Oncoimmunology. (2016) 5:e1082704. 10.1080/2162402X.2015.1082704 PubMed DOI PMC

Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G, et al. . Increased intratumoral IL-22-producing CD4+ T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother. (2012) 61:1965–75. 10.1007/s00262-012-1241-5 PubMed DOI PMC

Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, et al. . Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J Clin Immunol. (2012) 32:1332–9. 10.1007/s10875-012-9718-8 PubMed DOI

Chen X, Wang Y, Wang J, Wen J, Jia X, Wang X, et al. . Accumulation of T-helper 22 cells, interleukin-22 and myeloid-derived suppressor cells promotes gastric cancer progression in elderly patients. Oncol Lett. (2018) 16:253–61. 10.3892/ol.2018.8612 PubMed DOI PMC

Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, et al. . IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer. (2014) 111:763–71. 10.1038/bjc.2014.336 PubMed DOI PMC

Qin SY, Yang XW, Luo W, Chen M, Liu ZL, Su SB, et al. . Association of interleukin 22 polymorphisms with gastric cancer risk. Tumor Biol. (2015) 36:2033–9. 10.1007/s13277-014-2810-3 PubMed DOI

Vauhkonen H, Vauhkonen M, Sajantila A, Sipponen P, Knuutila S. Characterizing genetically stable and unstable gastric cancers by microsatellites and array comparative genomic hybridization. Cancer Genet Cytogenet. (2006) 170:133–9. 10.1016/j.cancergencyto.2006.06.001 PubMed DOI

Wang YM, Li ZX, Tang FB, Zhang Y, Zhou T, Zhang L, et al. . Association of genetic polymorphisms of interleukins with gastric cancer and precancerous gastric lesions in a high-risk Chinese population. Tumor Biol. (2016) 37:2233–42. 10.1007/s13277-015-4022-x PubMed DOI

Ji Y, Yang X, Li J, Lu Z, Li X, Yu J, et al. . IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. Int J Clin Exp Pathol. (2014) 7:3694. Available online at: https://pdfs.semanticscholar.org/45bc/2db52b66988d41be97227b759efb9716b387.pdf PubMed PMC

Sah RP, Dawra RK, Saluja AK. New insights into the pathogenesis of pancreatitis. Curr Opin Gastroenterol. (2013) 29:523. 10.1097/MOG.0b013e328363e399 PubMed DOI PMC

Nikoopour E, Bellemore SM, Singh B. IL-22, cell regeneration and autoimmunity. Cytokine. (2015) 74:35–42. 10.1016/j.cyto.2014.09.007 PubMed DOI

Xuan X, Tian Z, Zhang M, Zhou J, Gao W, Zhang Y, et al. . Diverse effects of interleukin-22 on pancreatic diseases. Pancreatology. (2018) 18:231–7. 10.1016/j.pan.2018.02.014 PubMed DOI

Curd LM, Favors SE, Gregg RK. Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol. (2012) 168:192–9. 10.1111/j.1365-2249.2012.04570.x PubMed DOI PMC

Wen Z, Liao Q, Zhao J, Hu YA, You L, Lu Z, et al. . High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. Ann Surg Oncol. (2014) 21:125–32. 10.1245/s10434-013-3322-x PubMed DOI

He W, Wu J, Shi J, Huo YM, Dai W, Geng J, et al. . IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res. (2018) 78:3293–305. 10.1158/0008-5472.CAN-17-3131 PubMed DOI

Ye ZJ, Zhou Q, Yin W, Yuan ML, Yang WB, Xiang F, et al. . Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett. (2012) 326:23–32. 10.1016/j.canlet.2012.07.013 PubMed DOI

Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, et al. . Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer. (2015) 136:2556–65. 10.1002/ijc.29305 PubMed DOI

Briso EM, Guinea-Viniegra J, Bakiri L, Rogon Z, Petzelbauer P, Eils R, et al. . Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos. Genes Develop. (2013) 27:1959–73. 10.1101/gad.223339.113 PubMed DOI PMC

Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, et al. . Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. (2015) 45:922–31. 10.1002/eji.201445052 PubMed DOI

Kim Y, Lee J, Kim J, Choi CW, Hwang YI, Kang JS, et al. . The pathogenic role of interleukin-22 and its receptor during UVB-induced skin inflammation. PLoS ONE. (2017) 12:e0178567. 10.1371/journal.pone.0178567 PubMed DOI PMC

Zhang S, Fujita H, Mitsui H, Yanofsky VR, Fuentes-Duculan J, Pettersen JS, et al. . Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS ONE. (2013) 8:e62154. 10.1371/journal.pone.0062154 PubMed DOI PMC

Zhang W, Chen Y, Wei H, Zheng C, Sun R, Zhang J, et al. . Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Clin Cancer Res. (2008) 14:6432–9. 10.1158/1078-0432.CCR-07-4401 PubMed DOI

Cannavo S, Ferrau F, Cotta OR, Saitta S, Barresi V, Cristani MT. Increased serum interleukin-22 levels in patients with PRL-secreting and non-functioning pituitary macroadenomas. Pituitary. (2014) 17:76–80. 10.1007/s11102-013-0468-2 PubMed DOI

Liu X, Yang J, Deng W. The inflammatory cytokine IL-22 promotes murine gliomas via proliferation. Exp Ther Med. (2017) 13:1087–92. 10.3892/etm.2017.4059 PubMed DOI PMC

Kong X, Feng D, Mathews S, Gao B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol. (2013) 28:56–60. 10.1111/jgh.12032 PubMed DOI PMC

Lu DH, Guo XY, Qin SY, Luo W, Huang XL, Chen M, et al. . Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines. World J Gastroenterol. (2015) 21:1531. 10.3748/wjg.v21.i5.1531 PubMed DOI PMC

Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. (2004) 39:1332–42. 10.1002/hep.20184 PubMed DOI

Xing WW, Zou MJ, Liu S, Xu T, Gao J, Wang JX, et al. . Hepatoprotective effects of IL-22 on fulminant hepatic failure induced by d-galactosamine and lipopolysaccharide in mice. Cytokine. (2011) 56:174–9. 10.1016/j.cyto.2011.07.022 PubMed DOI

Qin S, Ma S, Huang X, Lu D, Zhou Y, Jiang H. Th22 cells are associated with hepatocellular carcinoma development and progression. Chin J Cancer Res. (2014) 26:135–41. 10.3978/j.issn.1000-9604.2014.02.14 PubMed DOI PMC

Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, et al. . Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. (2011) 54:900–9. 10.1002/hep.24486 PubMed DOI

Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. (2014) 25:257–71. 10.1016/j.cytogfr.2014.04.005 PubMed DOI

Scheiermann P, Bachmann M, Goren I, Zwissler B, Pfeilschifter J, Mühl H. Application of interleukin-22 mediates protection in experimental acetaminophen-induced acute liver injury. Am J Pathol. (2013) 182:1107–13. 10.1016/j.ajpath.2012.12.010 PubMed DOI

Pan H, Hong F, Radaeva S, Gao B. Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol. (2004) 1:43–9. Available online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.5569&rep=rep1&type=pdf PubMed

Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis. (2012) 18:1777–84. 10.1002/ibd.22929 PubMed DOI PMC

De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. . Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. (2015) 34:3493–503. 10.1038/onc.2014.286 PubMed DOI PMC

Katara GK, Kulshrestha A, Schneiderman S, Ibrahim S, Bilal M, Riehl VE, et al. IL-22 is specifically required for malignancy in breast cancer: a potential target to control cancer metastasis. Mol Oncol. (2020) 14:211–24. 10.1158/1538-7445.SABCS18-4600 PubMed DOI

Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, et al. . IL-22 is related to development of human colon cancer by activation of STAT3. BMC cancer. (2013) 13:59. 10.1186/1471-2407-13-59 PubMed DOI PMC

Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S. IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget. (2017) 8:103601. 10.18632/oncotarget.22063 PubMed DOI PMC

Carmo RF, Cavalcanti MS, Moura P. Role of Interleukin-22 in chronic liver injury. Cytokine. (2017) 98:107–14. 10.1016/j.cyto.2016.08.023 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...