Facile production of ultra-fine silicon nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33047035
PubMed Central
PMC7540795
DOI
10.1098/rsos.200736
PII: rsos200736
Knihovny.cz E-zdroje
- Klíčová slova
- Si nanoparticle, synthesis, trichlorosilane, ultra-fine silicon,
- Publikační typ
- časopisecké články MeSH
A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5) n sol-gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.
Zobrazit více v PubMed
Liu SM, Yang Y, Sato S, Kimura K. 2006. Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution. Chem. Mater. 18, 637–642. (10.1021/cm0519636) DOI
Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kuzlarich SM. 2002. Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem. Commun. 17, 1822–1823. (10.1039/b205301b) PubMed DOI
Mazzaro R, Romano F, Ceroni P. 2017. Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys. Chem. Chem. Phys. 19, 26 507–26 526. (10.1039/c7cp05208a) PubMed DOI
Huan C, Shu-Qing S. 2014. Silicon nanoparticles: preparation, properties, and applications. Chinese Phys. B 23, 1–14. (10.1088/1674-1056/23/8/088102) DOI
Biesuz M, et al. 2019. First synthesis of silicon nanocrystals in amorphous silicon nitride from a preceramic polymer. Nanotechnology 30, 1–10. (10.1088/1361-6528/ab0cc8) PubMed DOI
Kelly JA, Henderson EJ, Veinot JGC. 2010. Sol-gel precursors for group 14 nanocrystals. Chem. Commun. 46, 8704–8718. (10.1039/c0cc02609c) PubMed DOI
Tilley RD, Warner JH, Yamamoto K, Matsui I, Fujimori H. 2005. Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 14, 1833–1835. (10.1039/b416069j) PubMed DOI
Rosso-Vasic M, Spruijt E, Lagen B, Cola L, Zuilhof H. 2008. Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4, 1835–1841. (10.1002/smll.200800066) PubMed DOI
Zhang X, Neiner D, Wang S, Louie AY, Kauzlarich SM. 2007. A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology 18, 1–10. (10.1088/0957-4484/18/9/095601) PubMed DOI PMC
Jaumann T, Herklotz M, Klose M, Pinkert K, Oswald S, Eckert J, Giebeler L. 2015. Tailoring hollow silicon-carbon nanocomposites as high-performance anodes in secondary lithium-based batteries through economical chemistry. Chem. Mater. 27, 37–43. (10.1021/cm502520y) DOI
Kim H, Seo M, Park MH, Cho J. 2010. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chemie - Int. Ed. 49, 2146–2149. (10.1002/anie.200906287) PubMed DOI
Lam C, Zhang Y, Tang Y, Lee C, Bello I, Lee S. 2000. Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J. Cryst. Growth 220, 466–470. (10.1016/S0022-0248(00)00882-4) DOI
Heath JR. 1992. A liquid-solution-phase synthesis of crystalline silicon. Science 258, 1131–1133. (10.1126/science.258.5085.113) PubMed DOI
Sudeep PK, Page Z, Emrick T. 2008. PEGylated silicon nanoparticles: synthesis and characterization. Chem. Commun. 46, 6126–6127. (10.1039/b813025f) PubMed DOI
Veinot JGC. 2006. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem. Commun. 40, 4160–4168. (10.1039/b607476f) PubMed DOI
Bley RA, Kauzlarich SM. 1996. A low-temperature solution phase route for the synthesis of silicon nanoclusters. J. Am. Chem. Soc. 118, 12 461–12 462. (10.1021/ja962787s) DOI
Yang CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR. 1999. Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191–5195. (10.1021/ja9828509) DOI
Mayeri D, Phillips BL, Augustine MP, Kauzlarich SM. 2001. NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem. Mater. 13, 765–770 (10.1021/cm000418w) DOI
Zou J, Baldwin RK, Pettigrew KA, Kauzlarich SM. 2004. Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4, 1181–1186. (10.1021/nl0497373) DOI
Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM. 2006. Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4. J. Clust. Sci. 17, 565–578. (10.1007/s10876-006-0082-9) DOI
Dhas NA, Raj CP, Gedanken A. 1998. Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem. Mater. 10, 3278–3281. (10.1021/cm980408j) DOI
Wilcoxon JP, Samara GA, Provencio PN. 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B - Condens. Matter Mater. Phys. 60, 2704–2714. (10.1103/PhysRevB.60.2704) DOI
Neiner D, Chiu HW, Kauzlarich SM. 2006. Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J. Am. Chem. Soc. 128, 11 016–11 017. (10.1021/ja064177q) PubMed DOI
Liu Q, Kauzlarich SM. 2002. A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 96, 72–75. (10.1016/S0921-5107(02)00293-3) DOI
Brus LE, Szajowski PF, Wilson WL, Harris TD, Schuppler S, Citrin PH. 1995. Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117, 2915–2922. (10.1021/ja00115a025) DOI
Hessel CM, Henderson EJ, Veinot JGC. 2006. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139–6146. (10.1021/cm0602803) DOI
Henderson EJ, Kelly JA, Veinot JGC. 2009. Influence of HSiO1.5 sol−gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater. 21, 5426–5434. (10.1021/cm902028q) DOI
Liu S, Sato S, Kimura K. 2005. Synthesis of luminescent silicon nanopowders redispersible to various solvents. Langmuir 21, 6324–6329. (10.1021/la050346t) PubMed DOI
Sato S, Swihart MT. 2006. Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem. Mater. 18, 4083–4088. (10.1021/cm060750t) DOI
Baney RH, Itoh M, Sakakibara A, Suzuki T. 1995. Silsesquioxanes. Chem. Rev. 95, 1409–1430. (10.1021/cr00037a012) DOI
Kawakami Y. 2007. Structural control and functionalization of oligomeric silsesquioxanes. React. Funct. Polym. 67, 1137–1147. (10.1016/j.reactfunctpolym.2007.07.034) DOI
Olynick DL, Cord B, Schipotinin A, Ogletree DF, Schuck PJ. 2010. Electron-beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption. J. Vac. Sci. Technol. B 28, 581–587. (10.1116/1.3425632) DOI
Xu R, Guo M, Qi L, Zhang Q, Zhong J. 2016. Tailoring the microstructure and surface properties of hydrogen silsesquioxane via an in-situ thiol functionalization. Mater. Lett. 184, 248–251. (10.1016/j.matlet.2016.08.080) DOI
Tan D, Ma Z, Xu B, Dai Y, Ma G, He M, Jin Z, Qiu J. 2011. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys. 13, 20 255–20 261. (10.1039/c1cp21366k) PubMed DOI
Knipping J, Wiggers H, Rellinghaus B, Roth P, Konjhodzic D, Meier C. 2004. Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039–1044. (10.1166/jnn.2004.149) PubMed DOI
Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. 2013. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174–181. (10.1007/s12274-013-0293-y) PubMed DOI
Huelser T, Schnurre SM, Wiggers H, Schulz C. 2010. Gas-phase synthesis of highly-specific nanoparticles on the pilot-plant scale. TechConnect Briefs 1, 330–333.
Xiao C, Guo J, Zhang P, Chen C, Chen L, Qian L. 2017. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Sci. Rep. 7, 40750 (10.1038/srep40750) PubMed DOI PMC
Palermo V, Jones D. 2001. Morphological changes of the Si [1 0 0] surface after treatment with concentrated and diluted HF. Mater. Sci. Semicond. Process. 4, 437–441. (10.1016/S1369-8001(01)00007-5) DOI
Trucks GW, Raghavachari K, Higashi GS, Chabal YJ. 1990. Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65, 504 (10.1103/PhysRevLett.65.504) PubMed DOI
Raghavachari K, Higashi GS, Chabal YJ, Trucks GW. 1993. First-principles study of the etching reactions of HF and H2O with Si/SiO2 surfaces. Mater. Res. Soc. Symp. Proc. 315, 437 (10.1557/PROC-315-437) DOI
Niwano M, Miura T, Kimura Y, Tajima R, Miyamoto N. 1996. Real-time, in situ infrared study of etching of Si (100) and (111) surfaces in dilute hydrofluoric acid solution. J. Appl. Phys. 79, 3708 (10.1063/1.361203) DOI
Jacob P, Chabal YJ, Raghavachari K, Becker RS, Becker AJ. 1992. Kinetic model of the chemical etching of Si(111) surfaces by buffered HF solutions. Surf. Sci. 275, 407–413. (10.1016/0039-6028(92)90813-L) DOI
Qiu T, Wu XL, Kong F, Ma HB, Chu PK. 2005. Solvent effect on light-emitting property of Si nanocrystals. Phys. Lett. A 334, 447–452. (10.1016/j.physleta.2004.11.051) DOI
figshare
10.6084/m9.figshare.c.5112737