Facile production of ultra-fine silicon nanoparticles

. 2020 Sep ; 7 (9) : 200736. [epub] 20200916

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33047035

A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5) n sol-gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.

Zobrazit více v PubMed

Liu SM, Yang Y, Sato S, Kimura K. 2006. Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution. Chem. Mater. 18, 637–642. (10.1021/cm0519636) DOI

Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kuzlarich SM. 2002. Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem. Commun. 17, 1822–1823. (10.1039/b205301b) PubMed DOI

Mazzaro R, Romano F, Ceroni P. 2017. Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys. Chem. Chem. Phys. 19, 26 507–26 526. (10.1039/c7cp05208a) PubMed DOI

Huan C, Shu-Qing S. 2014. Silicon nanoparticles: preparation, properties, and applications. Chinese Phys. B 23, 1–14. (10.1088/1674-1056/23/8/088102) DOI

Biesuz M, et al. 2019. First synthesis of silicon nanocrystals in amorphous silicon nitride from a preceramic polymer. Nanotechnology 30, 1–10. (10.1088/1361-6528/ab0cc8) PubMed DOI

Kelly JA, Henderson EJ, Veinot JGC. 2010. Sol-gel precursors for group 14 nanocrystals. Chem. Commun. 46, 8704–8718. (10.1039/c0cc02609c) PubMed DOI

Tilley RD, Warner JH, Yamamoto K, Matsui I, Fujimori H. 2005. Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 14, 1833–1835. (10.1039/b416069j) PubMed DOI

Rosso-Vasic M, Spruijt E, Lagen B, Cola L, Zuilhof H. 2008. Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4, 1835–1841. (10.1002/smll.200800066) PubMed DOI

Zhang X, Neiner D, Wang S, Louie AY, Kauzlarich SM. 2007. A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology 18, 1–10. (10.1088/0957-4484/18/9/095601) PubMed DOI PMC

Jaumann T, Herklotz M, Klose M, Pinkert K, Oswald S, Eckert J, Giebeler L. 2015. Tailoring hollow silicon-carbon nanocomposites as high-performance anodes in secondary lithium-based batteries through economical chemistry. Chem. Mater. 27, 37–43. (10.1021/cm502520y) DOI

Kim H, Seo M, Park MH, Cho J. 2010. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chemie - Int. Ed. 49, 2146–2149. (10.1002/anie.200906287) PubMed DOI

Lam C, Zhang Y, Tang Y, Lee C, Bello I, Lee S. 2000. Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J. Cryst. Growth 220, 466–470. (10.1016/S0022-0248(00)00882-4) DOI

Heath JR. 1992. A liquid-solution-phase synthesis of crystalline silicon. Science 258, 1131–1133. (10.1126/science.258.5085.113) PubMed DOI

Sudeep PK, Page Z, Emrick T. 2008. PEGylated silicon nanoparticles: synthesis and characterization. Chem. Commun. 46, 6126–6127. (10.1039/b813025f) PubMed DOI

Veinot JGC. 2006. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem. Commun. 40, 4160–4168. (10.1039/b607476f) PubMed DOI

Bley RA, Kauzlarich SM. 1996. A low-temperature solution phase route for the synthesis of silicon nanoclusters. J. Am. Chem. Soc. 118, 12 461–12 462. (10.1021/ja962787s) DOI

Yang CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR. 1999. Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191–5195. (10.1021/ja9828509) DOI

Mayeri D, Phillips BL, Augustine MP, Kauzlarich SM. 2001. NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem. Mater. 13, 765–770 (10.1021/cm000418w) DOI

Zou J, Baldwin RK, Pettigrew KA, Kauzlarich SM. 2004. Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4, 1181–1186. (10.1021/nl0497373) DOI

Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM. 2006. Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4. J. Clust. Sci. 17, 565–578. (10.1007/s10876-006-0082-9) DOI

Dhas NA, Raj CP, Gedanken A. 1998. Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem. Mater. 10, 3278–3281. (10.1021/cm980408j) DOI

Wilcoxon JP, Samara GA, Provencio PN. 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B - Condens. Matter Mater. Phys. 60, 2704–2714. (10.1103/PhysRevB.60.2704) DOI

Neiner D, Chiu HW, Kauzlarich SM. 2006. Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J. Am. Chem. Soc. 128, 11 016–11 017. (10.1021/ja064177q) PubMed DOI

Liu Q, Kauzlarich SM. 2002. A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 96, 72–75. (10.1016/S0921-5107(02)00293-3) DOI

Brus LE, Szajowski PF, Wilson WL, Harris TD, Schuppler S, Citrin PH. 1995. Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117, 2915–2922. (10.1021/ja00115a025) DOI

Hessel CM, Henderson EJ, Veinot JGC. 2006. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139–6146. (10.1021/cm0602803) DOI

Henderson EJ, Kelly JA, Veinot JGC. 2009. Influence of HSiO1.5 sol−gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater. 21, 5426–5434. (10.1021/cm902028q) DOI

Liu S, Sato S, Kimura K. 2005. Synthesis of luminescent silicon nanopowders redispersible to various solvents. Langmuir 21, 6324–6329. (10.1021/la050346t) PubMed DOI

Sato S, Swihart MT. 2006. Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem. Mater. 18, 4083–4088. (10.1021/cm060750t) DOI

Baney RH, Itoh M, Sakakibara A, Suzuki T. 1995. Silsesquioxanes. Chem. Rev. 95, 1409–1430. (10.1021/cr00037a012) DOI

Kawakami Y. 2007. Structural control and functionalization of oligomeric silsesquioxanes. React. Funct. Polym. 67, 1137–1147. (10.1016/j.reactfunctpolym.2007.07.034) DOI

Olynick DL, Cord B, Schipotinin A, Ogletree DF, Schuck PJ. 2010. Electron-beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption. J. Vac. Sci. Technol. B 28, 581–587. (10.1116/1.3425632) DOI

Xu R, Guo M, Qi L, Zhang Q, Zhong J. 2016. Tailoring the microstructure and surface properties of hydrogen silsesquioxane via an in-situ thiol functionalization. Mater. Lett. 184, 248–251. (10.1016/j.matlet.2016.08.080) DOI

Tan D, Ma Z, Xu B, Dai Y, Ma G, He M, Jin Z, Qiu J. 2011. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys. 13, 20 255–20 261. (10.1039/c1cp21366k) PubMed DOI

Knipping J, Wiggers H, Rellinghaus B, Roth P, Konjhodzic D, Meier C. 2004. Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039–1044. (10.1166/jnn.2004.149) PubMed DOI

Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. 2013. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174–181. (10.1007/s12274-013-0293-y) PubMed DOI

Huelser T, Schnurre SM, Wiggers H, Schulz C. 2010. Gas-phase synthesis of highly-specific nanoparticles on the pilot-plant scale. TechConnect Briefs 1, 330–333.

Xiao C, Guo J, Zhang P, Chen C, Chen L, Qian L. 2017. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Sci. Rep. 7, 40750 (10.1038/srep40750) PubMed DOI PMC

Palermo V, Jones D. 2001. Morphological changes of the Si [1 0 0] surface after treatment with concentrated and diluted HF. Mater. Sci. Semicond. Process. 4, 437–441. (10.1016/S1369-8001(01)00007-5) DOI

Trucks GW, Raghavachari K, Higashi GS, Chabal YJ. 1990. Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65, 504 (10.1103/PhysRevLett.65.504) PubMed DOI

Raghavachari K, Higashi GS, Chabal YJ, Trucks GW. 1993. First-principles study of the etching reactions of HF and H2O with Si/SiO2 surfaces. Mater. Res. Soc. Symp. Proc. 315, 437 (10.1557/PROC-315-437) DOI

Niwano M, Miura T, Kimura Y, Tajima R, Miyamoto N. 1996. Real-time, in situ infrared study of etching of Si (100) and (111) surfaces in dilute hydrofluoric acid solution. J. Appl. Phys. 79, 3708 (10.1063/1.361203) DOI

Jacob P, Chabal YJ, Raghavachari K, Becker RS, Becker AJ. 1992. Kinetic model of the chemical etching of Si(111) surfaces by buffered HF solutions. Surf. Sci. 275, 407–413. (10.1016/0039-6028(92)90813-L) DOI

Qiu T, Wu XL, Kong F, Ma HB, Chu PK. 2005. Solvent effect on light-emitting property of Si nanocrystals. Phys. Lett. A 334, 447–452. (10.1016/j.physleta.2004.11.051) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5112737

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...