Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I)

. 2023 ; 11 () : 1028008. [epub] 20230619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37405247

With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.

Zobrazit více v PubMed

Amati M., Stoia S., Baerends E. J. (2020). The electron affinity as the highest occupied anion orbital energy with a sufficiently accurate approximation of the exact Kohn–Sham potential. J. Chem. Theory Comput. 16 (1), 443–452. 10.1021/acs.jctc.9b00981 PubMed DOI PMC

Ameixa J., Arthur-Baidoo E., Meiβner R., Makurat S., Kozak W., Butowska K., et al. (2018). Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer. J. J. Chem. Phys. 149, 164307. 10.1063/1.5050594 PubMed DOI

Amidani L., Vaughan G. B. M., Plakhova T. V., Yu Romanchuk A., Gerber E., Svetogorov R., et al. (2021). The application of HEXS and HERFD XANES for accurate structural characterisation of actinide nanomaterials: The case of ThO 2 . Eur. J. 27, 252–263. 10.1002/chem.202003360 PubMed DOI PMC

Armbruster M. K., Kloppera W., Weigend F. (2006). Basis-set extensions for two-component spin–orbit treatments of heavy elements. Phys. Chem. Chem. Phys. 8, 4862–4865. 10.1039/b610211e PubMed DOI

Bald I., Dabkowska I., Illenberger E., Ingólfsson F. (2007). Energy selective excision of CN− following electron attachment to hexafluoroacetone azine ((CF3)2CN–NC(CF3)2). Phys. Chem. Chem. Phys. 9, 2983–2990. 10.1039/b702482g PubMed DOI

Barton S., Heng X., Johnson B. A., Summers M. F. (2013). Database proton NMR chemical shifts for RNA signal assignment and validation. J. Biomol. NMR 55, 33–46. 10.1007/s10858-012-9683-9 PubMed DOI PMC

Bass T. M., Carr C. R., Sherbow T. J., Fettinger J. C., Berben L. A. (2020). Syntheses of square planar gallium complexes and a proton NMR correlation probing metalloaromaticity. Inorg. Chem. 59 (18), 13517–13523. 10.1021/acs.inorgchem.0c01908 PubMed DOI

Belić D., Shawrav M. M., Bertagnolli E., Wanzenboeck H. D. (2017). Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment. Beilstein J. Nanotechnol. 8, 2530–2543. 10.3762/bjnano.8.253 PubMed DOI PMC

Benitez D., Shapiro N. D., Tkatchouk E., Wang Y., Goddard W. A., Toste F. D. (2009). A bonding model for gold(I) carbene complexes. Nat. Chem. 1 (6), 482–486. 10.1038/nchem.331 PubMed DOI PMC

Blaya M., Bautista D., Gil-Rubio J. (2014a). Synthesis of Au(I) trifluoromethyl complexes. Oxidation to Au(III) and reductive elimination of halotrifluoromethanes. J. Organometallics 33, 6358–6368. 10.1021/om500669j DOI

Blaya M., Bautista D., Gil-Rubio J., Vicente J. (2014b). Synthesis of Au(I) trifluoromethyl complexes. Oxidation to Au(III) and reductive elimination of halotrifluoromethanes. Organometallics 33 (22), 6358–6368. 10.1021/om500669j DOI

Botman A., Mulders J. J. L., Hagen C. W. (2009). Creating pure nanostructures from electron beam-induced deposition using purification techniques: A technology perspective. Nanotechnology 20, 372001. 10.1088/0957-4484/20/37/372001 PubMed DOI

Brintlinger T., Fuhrer M. S., Melngailis J., Utke I., Bret T., Perentes A., et al. (2005). Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold. J. Vac. Sci. Technol. B 23, 3174. 10.1116/1.2130355 DOI

Bull J. N., Lee J. W. L., Gardiner S. H., Vallance C. (2014). Account: An introduction to velocity-map imaging mass spectrometry (VMImMS). Eur. J. Mass Spectrom. 20 (2), 117–129. 10.1255/ejms.1264 PubMed DOI

Cano-Higuita D. M., Villa-Vélez H. A., Telis-Romero J., Váquiro H. A., Nicoletti Telis V. R. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food Bioprod. Process. 93, 19–28. 10.1016/j.fbp.2013.10.005 DOI

Carden W. G., Lu H., Spencer J. A., Fairbrother D. H., McElwee-White L. (2018). Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Commun. 8, 343–357. 10.1557/mrc.2018.77 DOI

Carden W. G., Thorman R. M., Unlu I., Abboud K. A., Fairbrother H., McElwee-White L. (2019). Design, synthesis, and evaluation of CF3AuCNR precursors for focused electron beam-induced deposition of gold. ACS Appl. Mat. Interfaces 11, 11976–11987. 10.1021/acsami.8b18368 PubMed DOI

Chang S.-Y., Uehara A., Booth S. G., Ignatyev K., Frederick J., Mosselmans W., et al. (2015). Structure and bonding in Au(I) chloride species: A critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5, 6912–6918. 10.1039/c4ra13087a DOI

Cheng B., Ceriotti M. (2018). Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids. Phys. Rev. B 97, 054102. 10.1103/physrevb.97.054102 DOI

Chien M.-H., Shawrav M. M., Hingerl K., Taus P., Schinnerl M., Wanzenboeck H. D., et al. (2021). Analysis of carbon content in direct-write plasmonic Au structures by nanomechanical scanning absorption microscopy. J. Appl. Phys. 129, 063105. 10.1063/5.0035234 DOI

Doumeng M., Makhlouf L., Berthet B., Marsan O., Denape J., Chabert F., et al. (2021). A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym. Test. Vol. 93, 106878. 10.1016/j.polymertesting.2020.106878 DOI

Fernández-Moreira V., Marzo I., Concepción Gimeno M. (2014). Luminescent Re(i) and Re(i)/Au(i) complexes as cooperative partners in cell imaging and cancer therapy. Chem. Sci. 5, 4434–4446. 10.1039/c4sc01684j DOI

Fowlkes J. D., Winkler R., Lewis B. B., Fernandez-Pacheco A., Skoric L., Sanz-Hernandez D., et al. (2018). High-fidelity 3D-nanoprinting via focused electron beams: Computer-aided design (3BID). ACS Appl. Nano Mat. 1, 1028–1041. 10.1021/acsanm.7b00342 DOI

Fukaya H., Ono T., Abe T. (2001). Bond dissociation energies of CF3-X bonds (X = C, O, N, S, Br): Ab initio molecular orbital calculation and application to evaluation of fire suppression ability. J. Phys. Chem. A 105 (31), 7401–7404. 10.1021/jp011641z DOI

Furst M. R. L., Cazin C.S. (2010). Copper N-heterocyclic carbene (NHC) complexes as carbene transfer reagents. J. Chem. Commun. 46, 6924–6925. 10.1039/c0cc02308f PubMed DOI

Galassi R., Oumarou C. S., Burini A., Dolmella A., Micozzi D., Vincenzettic S., et al. (2015). A study on the inhibition of dihydrofolate reductase (DHFR) from Escherichia coli by gold(I) phosphane compounds. X-ray crystal structures of (4,5 – dichloro – 1H – imidazolate – 1 – yl) triphenylphosphane - gold(I) and (4,5 – dicyano – 1Himidazolate – 1 – yl) – triphenylphosphane - gold(I). Dalton Trans. 44, 3043–3056. 10.1039/c4dt01542h PubMed DOI

Gao Xiaoyu, Lowry Gregory V. (2018). Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. Nano Impact 9, 14–30. 10.1016/j.impact.2017.09.002 DOI

Gil-Rubio J., Vicente J. (2015). Gold trifluoromethyl complexes. Dalton Trans. 44, 19432–19442. 10.1039/c5dt02023a PubMed DOI

Glessi C., Mahgoub A., Hagen C. W., Tilset M. (2021). Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition. Beilstein J. Nanotechnol. 12, 257–269. 10.3762/bjnano.12.21 PubMed DOI PMC

González-Rubio S., Salgado C., Manzaneda-González V., Muñoz-Úbeda M., Ahijado-Guzmán R., Natale P., et al. (2022). Tunable gold nanorod/NAO conjugates for selective drug delivery in mitochondria-targeted cancer therapy. Nanoscale 14, 8028–8040. 10.1039/d2nr02353a PubMed DOI

Gope K., Prabhudesai V. S., Mason N. J., Krishnakumar E. (2016). Probing the resonant states of Cl2 using velocity slice imaging. J. Phys. B At. Mol. Opt. Phys. 49, 015201. 10.1088/0953-4075/49/1/015201 DOI

Hagen C. W., van Dorp W. F., Crozier P. A., Kruit P. (2008). Electronic pathways in nanostructure fabrication. Surf. Sci. 602, 3212–3219. 10.1016/j.susc.2007.11.034 DOI

Hasan M., Kozhevnikov I. V., Siddiqui M. R. H., Steiner A., Winterton N. (1999). Gold compounds as ionic liquids. Synthesis, structures, and thermal properties of N,N‘-Dialkylimidazolium tetrachloroaurate salts. Inorg. Chem. 38 (25), 5637–5641. 10.1021/ic990657p DOI

Holder C. F., Schaak R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13 (7), 7359–7365. 10.1021/acsnano.9b05157 PubMed DOI

Hopkinson M. N., Richter C., Schedler M., Glorius F. (2014). Glorius, an overview of N-heterocyclic carbenes, F. Nature 510, 485–496. 10.1038/nature13384 PubMed DOI

Hosseini M., Mohammadi A. H. (2020). A Gibbs free energy minimization based model for liquid–liquid equilibrium calculation of a system containing oil, brine, and surfactant. . IFP Energies Nouv. 75, 17. 10.2516/ogst/2020012 DOI

Jäger A., Span R. (2012). Equation of state for solid carbon dioxide based on the Gibbs free energy. J. Chem. Eng. Data 57, 590–597. 10.1021/je2011677 DOI

Jiao J., Xiao D., Zhao X., Deng Y. (2016). Analysis of the molecules structure and vertical electron affinity of organic gas impact on electric strength. Plasma Sci. Technol. 18, 554–559. 10.1088/1009-0630/18/5/19 DOI

Johnson A. (2016). An efficient and sustainable synthesis of NHC gold complexes. Chem. Commun. 52, 9664–9667. 10.1039/c6cc05190a PubMed DOI

Kaminskya J., Mataby R. A., Wernerb H.-J., Jensen F. (2008). The accuracy of local MP2 methods for conformational energies. Mol. Phys. 106 (No. 15), 1899–1906. 10.1080/00268970802360355 DOI

Khan H., Yerramilli A. S., D'Oliveira A., Alford T. L., Boffitov D. C., Patience G. S. (2020). Experimental methods in chemical engineering: X-Ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 98, 1255–1266. 10.1002/cjce.23747 DOI

Kuhness D., Gruber A., Winkler R., Sattelkow J., Fitzek H., Letofsky-Papst I., et al. (2021). High-fidelity 3D nanoprinting of plasmonic gold nanoantennas. ACS Appl. Mat. Interfaces 13, 1178–1191. 10.1021/acsami.0c17030 PubMed DOI

Lee J.-C., Chai J.-D., Lin S.-T. (2015). Assessment of density functional methods for exciton binding energies and related optoelectronic properties. RSC Adv. 5, 101370–101376. 10.1039/c5ra20085g DOI

Levchenko V., Glessi C., Øien-Ø⁰aard S., Tilset C. (2020). Organometallic chemistry in aqua regia: Metal and ligand based oxidations of (NHC)AuCl complexes. M. Dalton Trans. 49, 3473–3479. 10.1039/c9dt04472h PubMed DOI

Li X., Cai Z., Sevilla M. D. (2002). DFT calculations of the electron affinities of nucleic acid bases: Dealing with negative electron affinities. J. Phys. Chem. A 106 (8), 1596–1603. 10.1021/jp013337b DOI

Liu H. -T., Xiong X. -G., Dau P. D., Wang Y. -L., Huang D. -L., Li J., et al. (2013). Probing the nature of gold–carbon bonding in gold–alkynyl complexes. Nat. Commun. 4, 2223. 10.1038/ncomms3223 PubMed DOI PMC

Lomzov A. A., Vorobjev Y. N., Pyshnyi D. V. (2015). Evaluation of the Gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J. Phys. Chem. B 119 (49), 15221–15234. 10.1021/acs.jpcb.5b09645 PubMed DOI

Longevial J.-F., Langlois A., Buisson A., Devillers C. H., Clément S., van der Lee A., et al. (2016). Synthesis, characterization, and electronic properties of porphyrins conjugated with N-heterocyclic carbene (NHC)–Gold(I) complexes. Organometallics 35, 663–672. 10.1021/acs.organomet.5b00966 DOI

López-Vidaña E. C., Castillo Téllez M., Pilatowsky Figueroa I., Santis Espinosa L. F., Castillo-Téllez B. (2021). Moisture sorption isotherms, isosteric heat, and Gibbs free energy of stevia leaves. J. Food Process. Preserv 45, 15016. 10.1111/jfpp.15016 DOI

Luo Y.-R. (2007). Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press.Bond dissociation energies

Lüttge A. (2006). Crystal dissolution kinetics and Gibbs free energy. J. Electron Spectrosc. Relat. Phenom. 150 (Issues 2–3), 248–259. 10.1016/j.elspec.2005.06.007 DOI

Magén C., Pablo-Navarro J., María De Teresa J. (2021). Focused-electron-beam engineering of 3D magnetic nanowires. Nanomaterials 11, 402. PubMed PMC

Malet-Martino M., Martino R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): A review. Oncologist 7 (4), 288–323. 10.1634/theoncologist.7-4-288 PubMed DOI

Manaa M. R. (2017). Determination of adiabatic ionization potentials and electron affinities of energetic molecules with the Gaussian-4 method. Chem. Phys. Lett. 678, 102–106. 10.1016/j.cplett.2017.04.038 DOI

Marashdeh A., Tiesma T., van Velzen N. J. C., Harder S., Havenith R. W. A., De Hosson J. T. M., et al. (2017). The rational design of a Au(I) precursor for focused electron beam induced deposition. Beilstein J. Nanotechnol. 8, 2753–2765. 10.3762/bjnano.8.274 PubMed DOI PMC

Marell D. J., Emond S. J., Kulshrestha A., Hoye T. R. (2014). Analysis of seven-membered lactones by computational NMR methods: Proton NMR chemical shift data are more discriminating than carbon. J. Org. Chem. 79, 752–758. 10.1021/jo402627s PubMed DOI PMC

Marion N., Nolan S. P. (2008). N-Heterocyclic carbenes in gold catalysis. Chem. Soc. Rev. 37, 1776–1782. 10.1039/b711132k PubMed DOI

Mármol I., Quero J., Rodríguez-Yoldi M. J., Cerrada E. (2019). Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment. Cancers 11 (6), 780. 10.3390/cancers11060780 PubMed DOI PMC

Martínez-Salvador S., Forniés J., Menjón Martín A., Menjón B. (2011). [Au(CF3)(CO)]: A gold carbonyl compound stabilized by a trifluoromethyl group. B. Angew. Chem. Int. Ed. 50, 6571–6574. 10.1002/anie.201101231 PubMed DOI

Martins G. F., Cabral B. J. C. (2019). Electron propagator theory approach to the electron binding energies of a prototypical photo-switch molecular system: Azobenzene. J. Phys. Chem. A 123, 2091–2099. 10.1021/acs.jpca.9b00532 PubMed DOI

Mirzadeh N., Srinivasa Reddy T., Bhargava S. K. (2019). Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev. 388, 343–359. 10.1016/j.ccr.2019.02.027 DOI

Moroz E. M. (2011). X-Ray diffraction structure diagnostics of nanomaterials. Russ. Chem. Rev. 80, 293–312. 10.1070/rc2011v080n04abeh004163 DOI

Nag P., Polášek M., Fedor J. (2019). Dissociative electron attachment in NCCN: Absolute cross sections and velocity-map imaging. Phys. Rev. A 99, 052705. 10.1103/physreva.99.052705 DOI

Nobili S., Mini E., Landini I., Gabbiani C., Casini A., Messori L. (2010). Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev. 30 (3), 550–580. 10.1002/med.20168 PubMed DOI

Ochterski J. W. (2000). Thermochemistry in Gaussian. Available at https://gaussian.com/thermo/.

Olivotos S., Economou-Eliopoulos M. (2016). Gibbs free energy of formation for selected platinum group minerals (PGM). Geosciences 6, 2. 10.3390/geosciences6010002 DOI

Parr R. G., Pearson R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516. 10.1021/ja00364a005 DOI

Péres-Britrián A., Baya M., Casas J. M., Falvello L. R., Martín A., Menjón B. (2017). (CF3)3Au as a highly acidic organogold(iii) fragment. Chem. Eur. J. 23, 14918–14930. 10.1002/chem.201703352 PubMed DOI

Porchia M., Pellei M., Marinelli M., Tisato F., Del Bello F., Santini C. (2018). New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem. 146, 709–746. 10.1016/j.ejmech.2018.01.065 PubMed DOI

Prabhudesai V. S., Tadsare V., Ghosh S., Gope K., Davis D., Krishnakumar E. (2014). Dissociative electron attachment studies on acetone. J. Chem. Phys. 141, 164320. 10.1063/1.4898144 PubMed DOI

Puydinger dos Santos M. V., Szkudlarek A., Rydosz A., Guerra-Nuñez C., Béron F., Pirota K. R., et al. (2018). Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID. Beilstein J. Nanotechnol. 9, 91–101. 10.3762/bjnano.9.11 PubMed DOI PMC

Richardson J. H., Stephenson L. M., Brauman J. I. (1975). Photodetachment of electrons from trifluoromethyl and trifluorosilyl ions; the electron affinities of CF3− and SiF3−. Phys. Lett. 30, 17–20. 10.1016/0009-2614(75)85487-x DOI

Salike S., Bhatt N. (2020). Thermodynamically consistent estimation of Gibbs free energy from data: Data reconciliation approach. Bioinformatics 36 (Issue 4), 1219–1225. 10.1093/bioinformatics/btz741 PubMed DOI

Sauer W., Drexel H., Grill V., Pelc A., Gstir B., Hanl G., et al. (2002). Electron impact ionization studies for SF5CF3 . J. Phys. B Atomic Mol. Opt. Phys. 35 (11), 2567–2574. 10.1088/0953-4075/35/11/314 DOI

Scheunemann H. U., Illenberger E., Baumgärtel H. (1980). Dissociative electron attachment to CCl4, CHCl3, CH2Cl2 and CH3Cl. Ber. Bunsenges. Phys. Chem. 14, 580–585. 10.1002/bbpc.19800840612 DOI

Schuh E., Pflüger C., Citta A., Folda A., Rigobello M. P., Bindoli A., et al. (2012). Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. J. Med. Chem. 55 (11), 5518–5528. 10.1021/jm300428v PubMed DOI

Shawrav M. M., Taus P., Wanzenboeck H. D., SchinnerlStöger-Pollach M. M., Schwarz S., Steiger-Thirsfeld A., et al. (2016). Highly conductive and pure gold nanostructures grown by electron beam induced deposition. Sci. Rep. 6, 34003. 10.1038/srep34003 PubMed DOI PMC

Shuman N. S., Miller T. M., Friedman J. F., Viggiano A. A., Maergoiz A. I., Troe J. (2011). Pressure and temperature dependence of dissociative and non-dissociative electron attachment to CF3: Experiments and kinetic modelling. J. Chem. Phys. 135, 054306. 10.1063/1.3614471 PubMed DOI

Solovyev A., Ueng S.-H., Monot J., Fensterbank L., Malacria M., Lacôte E., et al. (2010). Estimated rate constants for hydrogen abstraction from N-heterocyclic Carbene−Borane complexes by an alkyl radical. D. P. Org. Lett. 12, 2998–3001. 10.1021/ol101014q PubMed DOI

Tahir K. M., Sajid A., Tariq Z. M., Chandra K. A., Iqbal M. S., Dong-Qing W. (2020). Gibbs free energy calculation of mutation in PncA and RpsA associated with pyrazinamide resistance. Front. Mol. Biosci. 7, 52. 10.3389/fmolb.2020.00052 PubMed DOI PMC

Tan S. J., Yan Y. K., Lee P. P. F., Lim K. H. (2010). Copper, gold and silver compounds as potential new anti-tumor metallodrugs. Future Med. Chem. 2, 1591–1608. 10.4155/fmc.10.234, No PubMed DOI

Taraban M. B., DePaz R. A., Lobo B., Yu Y. B. (2017). Water proton NMR: A tool for protein aggregation characterization. Anal. Chem. 89, 5494–5502. 10.1021/acs.analchem.7b00464 PubMed DOI

Thorman R. M., Ragesh Kumar T. P., Howard Fairbrother D., Ingólfsson O. (2015). The role of low-energy electrons in focused electron beam induced deposition: Four case studies of representative precursors. Beilstein J. Nanotechnol. 6, 1904–1926. 10.3762/bjnano.6.194 PubMed DOI PMC

Utke I., Hoffmann P., Melngailis J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26, 1197. 10.1116/1.2955728 DOI

Wang H. M. J., Lin I. J. B. (1998). Facile synthesis of silver(I)−Carbene complexes. Useful carbene transfer agents. Organometallics 17, 972–975. 10.1021/om9709704 DOI

Winkler R., Schmidt F.-P., Haselmann U., Fowlkes J. D., Lewis B. B., Kothleitner G., et al. (2017). Direct-Write 3D nanoprinting of plasmonic structures. ACS Appl. Mat. Interfaces 9, 8233–8240. 10.1021/acsami.6b13062 PubMed DOI

Woldu A. S., Mai J. (2012). Computation of the bond dissociation enthalpies and free energies of hydroxylic antioxidants using the ab initio Hartree–Fock method. Redox Rep. 17 (6), 252–274. 10.1179/1351000212y.0000000030 PubMed DOI PMC

Wozniak D., Hicks A., Sabbers W. A., Dobereiner G. (2019). Imidazolyl-phenyl (imp) anions: A modular structure for tuning solubility and coordinating ability. Dalton Trans. 48, 14138–14155. 10.1039/c9dt03511g PubMed DOI

Xu X., Truhlar D. G. (2011). Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J. Chem. Theory Comput. 7, 2766–2779. 10.1021/ct200234r PubMed DOI

Xuan C.-j., Wang X.-d., Xia L., Wu B., Li H., Tian S.-x. (2014). Dissociative electron attachment to 1,2-dichlorobenzene using mass spectrometry with phosphor screen. Chin. J. Chem. Phys. 27, 628–630. No. 6. 10.1063/1674-0068/27/06/628-630 DOI

Ye H., Trippel S., Di Fraia M., Fallahi A., Mücke O. D., Kärtner F. X., et al. (2018). Velocity-map imaging for emittance characterization of multiphoton electron emission from a gold surface. Phys. Rev. Appl. 9, 044018. 10.1103/physrevapplied.9.044018 DOI

Zhang D., Luo R., Zeng Z. (2019). Characterization of surface free energy of mineral filler by spreading pressure approach. Constr. Build. Mater. 218, 126–134. 10.1016/j.conbuildmat.2019.05.128 DOI

Zhao D., Han A., Qiu M. (2019). Ice lithography for 3D nanofabrication. Sci. Bull. 64, 865–871. 10.1016/j.scib.2019.06.001 PubMed DOI

Zhong Y., Ping D., Song X., Yin F. (2009). Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu. J. Alloys Compd. 476 (Issues 1–2), 113–117. 10.1016/j.jallcom.2008.08.075 DOI

Zhou X., Liu D., Bu H., Deng L., Liu H., Yuan P., et al. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 3 (Issue 1), 16–29. 10.1016/j.sesci.2017.12.002 DOI

Zou T., Lum C. T., Lok C.-N., Zhang J.-J., Che C.-M. (2015). Chemical biology of anticancer gold(iii) and gold(I) complexes. Chem. Soc. Rev. 44, 8786–8801. 10.1039/c5cs00132c PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...