Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37405247
PubMed Central
PMC10315492
DOI
10.3389/fchem.2023.1028008
PII: 1028008
Knihovny.cz E-zdroje
- Klíčová slova
- XRD, dissociative electron attachment, focused electron beam deposition, gold imidazolyl compounds, gold precursors,
- Publikační typ
- časopisecké články MeSH
With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.
Department of Chemistry University of Oslo Oslo Norway
School of Physical Sciences University of Kent Canterbury United Kingdom
Zobrazit více v PubMed
Amati M., Stoia S., Baerends E. J. (2020). The electron affinity as the highest occupied anion orbital energy with a sufficiently accurate approximation of the exact Kohn–Sham potential. J. Chem. Theory Comput. 16 (1), 443–452. 10.1021/acs.jctc.9b00981 PubMed DOI PMC
Ameixa J., Arthur-Baidoo E., Meiβner R., Makurat S., Kozak W., Butowska K., et al. (2018). Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer. J. J. Chem. Phys. 149, 164307. 10.1063/1.5050594 PubMed DOI
Amidani L., Vaughan G. B. M., Plakhova T. V., Yu Romanchuk A., Gerber E., Svetogorov R., et al. (2021). The application of HEXS and HERFD XANES for accurate structural characterisation of actinide nanomaterials: The case of ThO 2 . Eur. J. 27, 252–263. 10.1002/chem.202003360 PubMed DOI PMC
Armbruster M. K., Kloppera W., Weigend F. (2006). Basis-set extensions for two-component spin–orbit treatments of heavy elements. Phys. Chem. Chem. Phys. 8, 4862–4865. 10.1039/b610211e PubMed DOI
Bald I., Dabkowska I., Illenberger E., Ingólfsson F. (2007). Energy selective excision of CN− following electron attachment to hexafluoroacetone azine ((CF3)2CN–NC(CF3)2). Phys. Chem. Chem. Phys. 9, 2983–2990. 10.1039/b702482g PubMed DOI
Barton S., Heng X., Johnson B. A., Summers M. F. (2013). Database proton NMR chemical shifts for RNA signal assignment and validation. J. Biomol. NMR 55, 33–46. 10.1007/s10858-012-9683-9 PubMed DOI PMC
Bass T. M., Carr C. R., Sherbow T. J., Fettinger J. C., Berben L. A. (2020). Syntheses of square planar gallium complexes and a proton NMR correlation probing metalloaromaticity. Inorg. Chem. 59 (18), 13517–13523. 10.1021/acs.inorgchem.0c01908 PubMed DOI
Belić D., Shawrav M. M., Bertagnolli E., Wanzenboeck H. D. (2017). Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment. Beilstein J. Nanotechnol. 8, 2530–2543. 10.3762/bjnano.8.253 PubMed DOI PMC
Benitez D., Shapiro N. D., Tkatchouk E., Wang Y., Goddard W. A., Toste F. D. (2009). A bonding model for gold(I) carbene complexes. Nat. Chem. 1 (6), 482–486. 10.1038/nchem.331 PubMed DOI PMC
Blaya M., Bautista D., Gil-Rubio J. (2014a). Synthesis of Au(I) trifluoromethyl complexes. Oxidation to Au(III) and reductive elimination of halotrifluoromethanes. J. Organometallics 33, 6358–6368. 10.1021/om500669j DOI
Blaya M., Bautista D., Gil-Rubio J., Vicente J. (2014b). Synthesis of Au(I) trifluoromethyl complexes. Oxidation to Au(III) and reductive elimination of halotrifluoromethanes. Organometallics 33 (22), 6358–6368. 10.1021/om500669j DOI
Botman A., Mulders J. J. L., Hagen C. W. (2009). Creating pure nanostructures from electron beam-induced deposition using purification techniques: A technology perspective. Nanotechnology 20, 372001. 10.1088/0957-4484/20/37/372001 PubMed DOI
Brintlinger T., Fuhrer M. S., Melngailis J., Utke I., Bret T., Perentes A., et al. (2005). Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold. J. Vac. Sci. Technol. B 23, 3174. 10.1116/1.2130355 DOI
Bull J. N., Lee J. W. L., Gardiner S. H., Vallance C. (2014). Account: An introduction to velocity-map imaging mass spectrometry (VMImMS). Eur. J. Mass Spectrom. 20 (2), 117–129. 10.1255/ejms.1264 PubMed DOI
Cano-Higuita D. M., Villa-Vélez H. A., Telis-Romero J., Váquiro H. A., Nicoletti Telis V. R. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food Bioprod. Process. 93, 19–28. 10.1016/j.fbp.2013.10.005 DOI
Carden W. G., Lu H., Spencer J. A., Fairbrother D. H., McElwee-White L. (2018). Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Commun. 8, 343–357. 10.1557/mrc.2018.77 DOI
Carden W. G., Thorman R. M., Unlu I., Abboud K. A., Fairbrother H., McElwee-White L. (2019). Design, synthesis, and evaluation of CF3AuCNR precursors for focused electron beam-induced deposition of gold. ACS Appl. Mat. Interfaces 11, 11976–11987. 10.1021/acsami.8b18368 PubMed DOI
Chang S.-Y., Uehara A., Booth S. G., Ignatyev K., Frederick J., Mosselmans W., et al. (2015). Structure and bonding in Au(I) chloride species: A critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5, 6912–6918. 10.1039/c4ra13087a DOI
Cheng B., Ceriotti M. (2018). Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids. Phys. Rev. B 97, 054102. 10.1103/physrevb.97.054102 DOI
Chien M.-H., Shawrav M. M., Hingerl K., Taus P., Schinnerl M., Wanzenboeck H. D., et al. (2021). Analysis of carbon content in direct-write plasmonic Au structures by nanomechanical scanning absorption microscopy. J. Appl. Phys. 129, 063105. 10.1063/5.0035234 DOI
Doumeng M., Makhlouf L., Berthet B., Marsan O., Denape J., Chabert F., et al. (2021). A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym. Test. Vol. 93, 106878. 10.1016/j.polymertesting.2020.106878 DOI
Fernández-Moreira V., Marzo I., Concepción Gimeno M. (2014). Luminescent Re(i) and Re(i)/Au(i) complexes as cooperative partners in cell imaging and cancer therapy. Chem. Sci. 5, 4434–4446. 10.1039/c4sc01684j DOI
Fowlkes J. D., Winkler R., Lewis B. B., Fernandez-Pacheco A., Skoric L., Sanz-Hernandez D., et al. (2018). High-fidelity 3D-nanoprinting via focused electron beams: Computer-aided design (3BID). ACS Appl. Nano Mat. 1, 1028–1041. 10.1021/acsanm.7b00342 DOI
Fukaya H., Ono T., Abe T. (2001). Bond dissociation energies of CF3-X bonds (X = C, O, N, S, Br): Ab initio molecular orbital calculation and application to evaluation of fire suppression ability. J. Phys. Chem. A 105 (31), 7401–7404. 10.1021/jp011641z DOI
Furst M. R. L., Cazin C.S. (2010). Copper N-heterocyclic carbene (NHC) complexes as carbene transfer reagents. J. Chem. Commun. 46, 6924–6925. 10.1039/c0cc02308f PubMed DOI
Galassi R., Oumarou C. S., Burini A., Dolmella A., Micozzi D., Vincenzettic S., et al. (2015). A study on the inhibition of dihydrofolate reductase (DHFR) from Escherichia coli by gold(I) phosphane compounds. X-ray crystal structures of (4,5 – dichloro – 1H – imidazolate – 1 – yl) triphenylphosphane - gold(I) and (4,5 – dicyano – 1Himidazolate – 1 – yl) – triphenylphosphane - gold(I). Dalton Trans. 44, 3043–3056. 10.1039/c4dt01542h PubMed DOI
Gao Xiaoyu, Lowry Gregory V. (2018). Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. Nano Impact 9, 14–30. 10.1016/j.impact.2017.09.002 DOI
Gil-Rubio J., Vicente J. (2015). Gold trifluoromethyl complexes. Dalton Trans. 44, 19432–19442. 10.1039/c5dt02023a PubMed DOI
Glessi C., Mahgoub A., Hagen C. W., Tilset M. (2021). Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition. Beilstein J. Nanotechnol. 12, 257–269. 10.3762/bjnano.12.21 PubMed DOI PMC
González-Rubio S., Salgado C., Manzaneda-González V., Muñoz-Úbeda M., Ahijado-Guzmán R., Natale P., et al. (2022). Tunable gold nanorod/NAO conjugates for selective drug delivery in mitochondria-targeted cancer therapy. Nanoscale 14, 8028–8040. 10.1039/d2nr02353a PubMed DOI
Gope K., Prabhudesai V. S., Mason N. J., Krishnakumar E. (2016). Probing the resonant states of Cl2 using velocity slice imaging. J. Phys. B At. Mol. Opt. Phys. 49, 015201. 10.1088/0953-4075/49/1/015201 DOI
Hagen C. W., van Dorp W. F., Crozier P. A., Kruit P. (2008). Electronic pathways in nanostructure fabrication. Surf. Sci. 602, 3212–3219. 10.1016/j.susc.2007.11.034 DOI
Hasan M., Kozhevnikov I. V., Siddiqui M. R. H., Steiner A., Winterton N. (1999). Gold compounds as ionic liquids. Synthesis, structures, and thermal properties of N,N‘-Dialkylimidazolium tetrachloroaurate salts. Inorg. Chem. 38 (25), 5637–5641. 10.1021/ic990657p DOI
Holder C. F., Schaak R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13 (7), 7359–7365. 10.1021/acsnano.9b05157 PubMed DOI
Hopkinson M. N., Richter C., Schedler M., Glorius F. (2014). Glorius, an overview of N-heterocyclic carbenes, F. Nature 510, 485–496. 10.1038/nature13384 PubMed DOI
Hosseini M., Mohammadi A. H. (2020). A Gibbs free energy minimization based model for liquid–liquid equilibrium calculation of a system containing oil, brine, and surfactant. . IFP Energies Nouv. 75, 17. 10.2516/ogst/2020012 DOI
Jäger A., Span R. (2012). Equation of state for solid carbon dioxide based on the Gibbs free energy. J. Chem. Eng. Data 57, 590–597. 10.1021/je2011677 DOI
Jiao J., Xiao D., Zhao X., Deng Y. (2016). Analysis of the molecules structure and vertical electron affinity of organic gas impact on electric strength. Plasma Sci. Technol. 18, 554–559. 10.1088/1009-0630/18/5/19 DOI
Johnson A. (2016). An efficient and sustainable synthesis of NHC gold complexes. Chem. Commun. 52, 9664–9667. 10.1039/c6cc05190a PubMed DOI
Kaminskya J., Mataby R. A., Wernerb H.-J., Jensen F. (2008). The accuracy of local MP2 methods for conformational energies. Mol. Phys. 106 (No. 15), 1899–1906. 10.1080/00268970802360355 DOI
Khan H., Yerramilli A. S., D'Oliveira A., Alford T. L., Boffitov D. C., Patience G. S. (2020). Experimental methods in chemical engineering: X-Ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 98, 1255–1266. 10.1002/cjce.23747 DOI
Kuhness D., Gruber A., Winkler R., Sattelkow J., Fitzek H., Letofsky-Papst I., et al. (2021). High-fidelity 3D nanoprinting of plasmonic gold nanoantennas. ACS Appl. Mat. Interfaces 13, 1178–1191. 10.1021/acsami.0c17030 PubMed DOI
Lee J.-C., Chai J.-D., Lin S.-T. (2015). Assessment of density functional methods for exciton binding energies and related optoelectronic properties. RSC Adv. 5, 101370–101376. 10.1039/c5ra20085g DOI
Levchenko V., Glessi C., Øien-Ø⁰aard S., Tilset C. (2020). Organometallic chemistry in aqua regia: Metal and ligand based oxidations of (NHC)AuCl complexes. M. Dalton Trans. 49, 3473–3479. 10.1039/c9dt04472h PubMed DOI
Li X., Cai Z., Sevilla M. D. (2002). DFT calculations of the electron affinities of nucleic acid bases: Dealing with negative electron affinities. J. Phys. Chem. A 106 (8), 1596–1603. 10.1021/jp013337b DOI
Liu H. -T., Xiong X. -G., Dau P. D., Wang Y. -L., Huang D. -L., Li J., et al. (2013). Probing the nature of gold–carbon bonding in gold–alkynyl complexes. Nat. Commun. 4, 2223. 10.1038/ncomms3223 PubMed DOI PMC
Lomzov A. A., Vorobjev Y. N., Pyshnyi D. V. (2015). Evaluation of the Gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J. Phys. Chem. B 119 (49), 15221–15234. 10.1021/acs.jpcb.5b09645 PubMed DOI
Longevial J.-F., Langlois A., Buisson A., Devillers C. H., Clément S., van der Lee A., et al. (2016). Synthesis, characterization, and electronic properties of porphyrins conjugated with N-heterocyclic carbene (NHC)–Gold(I) complexes. Organometallics 35, 663–672. 10.1021/acs.organomet.5b00966 DOI
López-Vidaña E. C., Castillo Téllez M., Pilatowsky Figueroa I., Santis Espinosa L. F., Castillo-Téllez B. (2021). Moisture sorption isotherms, isosteric heat, and Gibbs free energy of stevia leaves. J. Food Process. Preserv 45, 15016. 10.1111/jfpp.15016 DOI
Luo Y.-R. (2007). Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press.Bond dissociation energies
Lüttge A. (2006). Crystal dissolution kinetics and Gibbs free energy. J. Electron Spectrosc. Relat. Phenom. 150 (Issues 2–3), 248–259. 10.1016/j.elspec.2005.06.007 DOI
Magén C., Pablo-Navarro J., María De Teresa J. (2021). Focused-electron-beam engineering of 3D magnetic nanowires. Nanomaterials 11, 402. PubMed PMC
Malet-Martino M., Martino R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): A review. Oncologist 7 (4), 288–323. 10.1634/theoncologist.7-4-288 PubMed DOI
Manaa M. R. (2017). Determination of adiabatic ionization potentials and electron affinities of energetic molecules with the Gaussian-4 method. Chem. Phys. Lett. 678, 102–106. 10.1016/j.cplett.2017.04.038 DOI
Marashdeh A., Tiesma T., van Velzen N. J. C., Harder S., Havenith R. W. A., De Hosson J. T. M., et al. (2017). The rational design of a Au(I) precursor for focused electron beam induced deposition. Beilstein J. Nanotechnol. 8, 2753–2765. 10.3762/bjnano.8.274 PubMed DOI PMC
Marell D. J., Emond S. J., Kulshrestha A., Hoye T. R. (2014). Analysis of seven-membered lactones by computational NMR methods: Proton NMR chemical shift data are more discriminating than carbon. J. Org. Chem. 79, 752–758. 10.1021/jo402627s PubMed DOI PMC
Marion N., Nolan S. P. (2008). N-Heterocyclic carbenes in gold catalysis. Chem. Soc. Rev. 37, 1776–1782. 10.1039/b711132k PubMed DOI
Mármol I., Quero J., Rodríguez-Yoldi M. J., Cerrada E. (2019). Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment. Cancers 11 (6), 780. 10.3390/cancers11060780 PubMed DOI PMC
Martínez-Salvador S., Forniés J., Menjón Martín A., Menjón B. (2011). [Au(CF3)(CO)]: A gold carbonyl compound stabilized by a trifluoromethyl group. B. Angew. Chem. Int. Ed. 50, 6571–6574. 10.1002/anie.201101231 PubMed DOI
Martins G. F., Cabral B. J. C. (2019). Electron propagator theory approach to the electron binding energies of a prototypical photo-switch molecular system: Azobenzene. J. Phys. Chem. A 123, 2091–2099. 10.1021/acs.jpca.9b00532 PubMed DOI
Mirzadeh N., Srinivasa Reddy T., Bhargava S. K. (2019). Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev. 388, 343–359. 10.1016/j.ccr.2019.02.027 DOI
Moroz E. M. (2011). X-Ray diffraction structure diagnostics of nanomaterials. Russ. Chem. Rev. 80, 293–312. 10.1070/rc2011v080n04abeh004163 DOI
Nag P., Polášek M., Fedor J. (2019). Dissociative electron attachment in NCCN: Absolute cross sections and velocity-map imaging. Phys. Rev. A 99, 052705. 10.1103/physreva.99.052705 DOI
Nobili S., Mini E., Landini I., Gabbiani C., Casini A., Messori L. (2010). Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev. 30 (3), 550–580. 10.1002/med.20168 PubMed DOI
Ochterski J. W. (2000). Thermochemistry in Gaussian. Available at https://gaussian.com/thermo/.
Olivotos S., Economou-Eliopoulos M. (2016). Gibbs free energy of formation for selected platinum group minerals (PGM). Geosciences 6, 2. 10.3390/geosciences6010002 DOI
Parr R. G., Pearson R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516. 10.1021/ja00364a005 DOI
Péres-Britrián A., Baya M., Casas J. M., Falvello L. R., Martín A., Menjón B. (2017). (CF3)3Au as a highly acidic organogold(iii) fragment. Chem. Eur. J. 23, 14918–14930. 10.1002/chem.201703352 PubMed DOI
Porchia M., Pellei M., Marinelli M., Tisato F., Del Bello F., Santini C. (2018). New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem. 146, 709–746. 10.1016/j.ejmech.2018.01.065 PubMed DOI
Prabhudesai V. S., Tadsare V., Ghosh S., Gope K., Davis D., Krishnakumar E. (2014). Dissociative electron attachment studies on acetone. J. Chem. Phys. 141, 164320. 10.1063/1.4898144 PubMed DOI
Puydinger dos Santos M. V., Szkudlarek A., Rydosz A., Guerra-Nuñez C., Béron F., Pirota K. R., et al. (2018). Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID. Beilstein J. Nanotechnol. 9, 91–101. 10.3762/bjnano.9.11 PubMed DOI PMC
Richardson J. H., Stephenson L. M., Brauman J. I. (1975). Photodetachment of electrons from trifluoromethyl and trifluorosilyl ions; the electron affinities of CF3− and SiF3−. Phys. Lett. 30, 17–20. 10.1016/0009-2614(75)85487-x DOI
Salike S., Bhatt N. (2020). Thermodynamically consistent estimation of Gibbs free energy from data: Data reconciliation approach. Bioinformatics 36 (Issue 4), 1219–1225. 10.1093/bioinformatics/btz741 PubMed DOI
Sauer W., Drexel H., Grill V., Pelc A., Gstir B., Hanl G., et al. (2002). Electron impact ionization studies for SF5CF3 . J. Phys. B Atomic Mol. Opt. Phys. 35 (11), 2567–2574. 10.1088/0953-4075/35/11/314 DOI
Scheunemann H. U., Illenberger E., Baumgärtel H. (1980). Dissociative electron attachment to CCl4, CHCl3, CH2Cl2 and CH3Cl. Ber. Bunsenges. Phys. Chem. 14, 580–585. 10.1002/bbpc.19800840612 DOI
Schuh E., Pflüger C., Citta A., Folda A., Rigobello M. P., Bindoli A., et al. (2012). Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. J. Med. Chem. 55 (11), 5518–5528. 10.1021/jm300428v PubMed DOI
Shawrav M. M., Taus P., Wanzenboeck H. D., SchinnerlStöger-Pollach M. M., Schwarz S., Steiger-Thirsfeld A., et al. (2016). Highly conductive and pure gold nanostructures grown by electron beam induced deposition. Sci. Rep. 6, 34003. 10.1038/srep34003 PubMed DOI PMC
Shuman N. S., Miller T. M., Friedman J. F., Viggiano A. A., Maergoiz A. I., Troe J. (2011). Pressure and temperature dependence of dissociative and non-dissociative electron attachment to CF3: Experiments and kinetic modelling. J. Chem. Phys. 135, 054306. 10.1063/1.3614471 PubMed DOI
Solovyev A., Ueng S.-H., Monot J., Fensterbank L., Malacria M., Lacôte E., et al. (2010). Estimated rate constants for hydrogen abstraction from N-heterocyclic Carbene−Borane complexes by an alkyl radical. D. P. Org. Lett. 12, 2998–3001. 10.1021/ol101014q PubMed DOI
Tahir K. M., Sajid A., Tariq Z. M., Chandra K. A., Iqbal M. S., Dong-Qing W. (2020). Gibbs free energy calculation of mutation in PncA and RpsA associated with pyrazinamide resistance. Front. Mol. Biosci. 7, 52. 10.3389/fmolb.2020.00052 PubMed DOI PMC
Tan S. J., Yan Y. K., Lee P. P. F., Lim K. H. (2010). Copper, gold and silver compounds as potential new anti-tumor metallodrugs. Future Med. Chem. 2, 1591–1608. 10.4155/fmc.10.234, No PubMed DOI
Taraban M. B., DePaz R. A., Lobo B., Yu Y. B. (2017). Water proton NMR: A tool for protein aggregation characterization. Anal. Chem. 89, 5494–5502. 10.1021/acs.analchem.7b00464 PubMed DOI
Thorman R. M., Ragesh Kumar T. P., Howard Fairbrother D., Ingólfsson O. (2015). The role of low-energy electrons in focused electron beam induced deposition: Four case studies of representative precursors. Beilstein J. Nanotechnol. 6, 1904–1926. 10.3762/bjnano.6.194 PubMed DOI PMC
Utke I., Hoffmann P., Melngailis J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26, 1197. 10.1116/1.2955728 DOI
Wang H. M. J., Lin I. J. B. (1998). Facile synthesis of silver(I)−Carbene complexes. Useful carbene transfer agents. Organometallics 17, 972–975. 10.1021/om9709704 DOI
Winkler R., Schmidt F.-P., Haselmann U., Fowlkes J. D., Lewis B. B., Kothleitner G., et al. (2017). Direct-Write 3D nanoprinting of plasmonic structures. ACS Appl. Mat. Interfaces 9, 8233–8240. 10.1021/acsami.6b13062 PubMed DOI
Woldu A. S., Mai J. (2012). Computation of the bond dissociation enthalpies and free energies of hydroxylic antioxidants using the ab initio Hartree–Fock method. Redox Rep. 17 (6), 252–274. 10.1179/1351000212y.0000000030 PubMed DOI PMC
Wozniak D., Hicks A., Sabbers W. A., Dobereiner G. (2019). Imidazolyl-phenyl (imp) anions: A modular structure for tuning solubility and coordinating ability. Dalton Trans. 48, 14138–14155. 10.1039/c9dt03511g PubMed DOI
Xu X., Truhlar D. G. (2011). Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J. Chem. Theory Comput. 7, 2766–2779. 10.1021/ct200234r PubMed DOI
Xuan C.-j., Wang X.-d., Xia L., Wu B., Li H., Tian S.-x. (2014). Dissociative electron attachment to 1,2-dichlorobenzene using mass spectrometry with phosphor screen. Chin. J. Chem. Phys. 27, 628–630. No. 6. 10.1063/1674-0068/27/06/628-630 DOI
Ye H., Trippel S., Di Fraia M., Fallahi A., Mücke O. D., Kärtner F. X., et al. (2018). Velocity-map imaging for emittance characterization of multiphoton electron emission from a gold surface. Phys. Rev. Appl. 9, 044018. 10.1103/physrevapplied.9.044018 DOI
Zhang D., Luo R., Zeng Z. (2019). Characterization of surface free energy of mineral filler by spreading pressure approach. Constr. Build. Mater. 218, 126–134. 10.1016/j.conbuildmat.2019.05.128 DOI
Zhao D., Han A., Qiu M. (2019). Ice lithography for 3D nanofabrication. Sci. Bull. 64, 865–871. 10.1016/j.scib.2019.06.001 PubMed DOI
Zhong Y., Ping D., Song X., Yin F. (2009). Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu. J. Alloys Compd. 476 (Issues 1–2), 113–117. 10.1016/j.jallcom.2008.08.075 DOI
Zhou X., Liu D., Bu H., Deng L., Liu H., Yuan P., et al. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 3 (Issue 1), 16–29. 10.1016/j.sesci.2017.12.002 DOI
Zou T., Lum C. T., Lok C.-N., Zhang J.-J., Che C.-M. (2015). Chemical biology of anticancer gold(iii) and gold(I) complexes. Chem. Soc. Rev. 44, 8786–8801. 10.1039/c5cs00132c PubMed DOI