• This record comes from PubMed

Cooling-evoked hemodynamic perturbations facilitate sympathetic activity with subsequent myogenic vascular oscillations via alpha2-adrenergic receptors

. 2017 Jul 18 ; 66 (3) : 449-457. [epub] 20170228

Language English Country Czech Republic Media print-electronic

Document type Journal Article

This study extends our previous work by examining the effects of alpha2-adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variability. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and heart rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of power spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethidine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...