The Coiled-Coil NLR Rph1, Confers Leaf Rust Resistance in Barley Cultivar Sudan
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P016855/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30593453
PubMed Central
PMC6446784
DOI
10.1104/pp.18.01052
PII: pp.18.01052
Knihovny.cz E-zdroje
- MeSH
- interakce hostitele a patogenu * MeSH
- ječmen (rod) fyziologie MeSH
- mapování chromozomů MeSH
- NLR proteiny fyziologie MeSH
- rostlinné geny MeSH
- rostlinné proteiny fyziologie MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NLR proteiny MeSH
- rostlinné proteiny MeSH
Unraveling and exploiting mechanisms of disease resistance in cereal crops is currently limited by their large repeat-rich genomes and the lack of genetic recombination or cultivar (cv)-specific sequence information. We cloned the first leaf rust resistance gene Rph1 (Rph1 a) from cultivated barley (Hordeum vulgare) using "MutChromSeq," a recently developed molecular genomics tool for the rapid cloning of genes in plants. Marker-trait association in the CI 9214/Stirling doubled haploid population mapped Rph1 to the short arm of chromosome 2H in a physical region of 1.3 megabases relative to the barley cv Morex reference assembly. A sodium azide mutant population in cv Sudan was generated and 10 mutants were confirmed by progeny-testing. Flow-sorted 2H chromosomes from Sudan (wild type) and six of the mutants were sequenced and compared to identify candidate genes for the Rph1 locus. MutChromSeq identified a single gene candidate encoding a coiled-coil nucleotide binding site Leucine-rich repeat (NLR) receptor protein that was altered in three different mutants. Further Sanger sequencing confirmed all three mutations and identified an additional two independent mutations within the same candidate gene. Phylogenetic analysis determined that Rph1 clustered separately from all previously cloned NLRs from the Triticeae and displayed highest sequence similarity (89%) with a homolog of the Arabidopsis (Arabidopsis thaliana) disease resistance protein 1 protein in Triticum urartu In this study we determined the molecular basis for Rph1-mediated resistance in cultivated barley enabling varietal improvement through diagnostic marker design, gene editing, and gene stacking technologies.
Faculty of Veterinary Science The University of Sydney Camden NSW 2570 Australia
John Innes Centre Norwich NR4 7UH United Kingdom
School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
Zobrazit více v PubMed
Arora S, Steuernagel B, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Hatta AM, Athiyannan N, et al. (2018) Resistance gene discovery and cloning by sequence capture and association genetics. bioRxiv PubMed
Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32: 195–204 PubMed
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120 PubMed PMC
Brun H, Chèvre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185: 285–299 PubMed
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973 PubMed PMC
Chandler PM, Harding CA (2013) “Overgrowth” mutants in barley and wheat: New alleles and phenotypes of the “Green Revolution” DELLA gene. J Exp Bot 64: 1603–1613 PubMed PMC
Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, Rokhsar DS (2011) Meraculous: De novo genome assembly with short paired-end reads. PLoS One 6: e23501. PubMed PMC
Chavan S, Gray J, Smith SM (2015) Diversity and evolution of Rp1 rust resistance genes in four maize lines. Theor Appl Genet 128: 985–998 PubMed
Dean R, van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13: 414–430 PubMed PMC
Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13: 163–178 PubMed PMC
Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31: 113–120
Dracatos PM, Khatkar MS, Singh D, Park RF (2014) Genetic mapping of a new race specific resistance allele effective to Puccinia hordei at the Rph9/Rph12 locus on chromosome 5HL in barley. BMC Plant Biol 14: 1598. PubMed PMC
Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100: 15253–15258 PubMed PMC
Franckowiak JD, Jin Y, Steffenson BJ (1992) Recommended allele symbols for leaf rust resistance genes in barley. Barley Gen Newsl 27: 36–44
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323: 1357–1360 PubMed PMC
Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13: 207–209
Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, et al. (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. BioRxiv PubMed
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8: e57994. PubMed PMC
International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361: 661 PubMed
Kawashima CG, Guimarães GA, Nogueira SR, MacLean D, Cook DR, Steuernagel B, Baek J, Bouyioukos C, Melo Bdo V, Tristão G, et al. (2016) A pigeon pea gene confers resistance to Asian soybean rust in soybean. Nat Biotechnol 34: 661–665 PubMed
Kislev ME. (1982) Stem rust of wheat 3300 years old found in Israel. Science 216: 993–994 PubMed
Koller T, Brunner S, Herren G, Hurni S, Keller B (2018) Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theor Appl Genet 131: 861–871 PubMed PMC
Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30: 285–299 PubMed PMC
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323: 1360–1363 PubMed
Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, et al. (2005) The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 44: 37–51 PubMed
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. (2007) Clustal W and Clustal X version 2.0. Bioinform 23: 2947–2948 PubMed
Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343: 1–28 PubMed
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760 PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 PubMed PMC
Lysák MA, Cíhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res 7: 431–444 PubMed
Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, et al. (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1: 15186. PubMed
Mago R, Till B, Periyannan S, Yu G, Wulff BBH, Lagudah E (2017) Generation of loss-of-function mutants for wheat rust disease resistance gene cloning. Methods Mol Biol 1659: 199–205 PubMed
Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, et al. (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4: 662–668 PubMed
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544: 427–433 PubMed
McGrann GRD, Smith PH, Burt C, Mateos GR, Chama TN, MacCormack R, Wessels E, Agenbag G, Boyd LA (2014) Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J Plant Sci Mol Breed 3: 1–11
Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, et al. (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47: 1494–1498 PubMed
Noël L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JD (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099–2112 PubMed PMC
Park RF. (2003) Pathogenic specialisation and pathotype distribution of Puccinia hordei Otth. in Australia, 1992–2001. Plant Dis 87: 1311–1316 PubMed
Park RF, Karakousis A (2002) Characterisation and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 and several Australian barleys. Plant Breed 121: 232–236
Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D (2015) Leaf rust of cultivated barley: Pathology and control. Annu Rev Phytopathol 53: 565–589 PubMed
Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, et al. (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341: 786–788 PubMed
Roane CW, Starling TM (1967) Inheritance of reaction to Puccinia hordei in barley. II. Gene symbols for loci in differential cultivars. Phytopathology 57: 66–68
Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, et al. (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17: 221. PubMed PMC
Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14: 8. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212 PubMed
Šimková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, Bartoš J, Safár J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9: 294. PubMed PMC
Stadler LJ. (1928) Mutations in barley induced by x-rays and radium. Science 68: 186–187 PubMed
Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD, et al. (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34: 652–655 PubMed
Steuernagel B, Vrána J, Karafiátová M, Wulff BBH, Doležel J (2017) Rapid gene isolation using MutChromSeq. Methods Mol Biol 1659: 231–243 PubMed
Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schonbeek HJ, Yu G, Baggs E, Witek AI, Yadav I, Krasileva KV, et al. (2018) Physical and transcriptional organisation of the bread wheat intracellular immune receptor repertoire. bioRxiv PubMed PMC
Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35: 793–796 PubMed
Thind AK, Wicker T, Müller T, Ackermann PM, Steuernagel B, Wulff BBH, Spannagl M, Twardziok SO, Felder M, Lux T, et al. (2018) Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biol 19: 104. PubMed PMC
Tornero P, Chao RA, Luthin WN, Goff SA, Dangl JL (2002) Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 14: 435–450 PubMed PMC
Torp J, Jørgensen JH (1986) Modification of barley powdery mildew resistance gene Ml-a12 by induced mutation. Can J Genet Cytol 28: 725–731
Tuleen IA, McDaniel ME (1971) Location of genes Pa and Pa5. Barley Newsl 15: 106–107
Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51: 435–454 PubMed
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, et al. (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4: 23–29 PubMed
Wei F, Wing RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14: 1903–1917 PubMed PMC
Wicker T, Matthews DE, Keller B (2002) TREP: A database for Triticeae repetitive elements. Trends Plant Sci 7: 561–562
Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, et al. (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11: 874–878 PubMed
Zhang P, McIntosh RA, Hoxha S, Dong C (2009) Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor Appl Genet 120: 25–29 PubMed
A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62
Chromosome analysis and sorting