A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37673864
PubMed Central
PMC10482968
DOI
10.1038/s41467-023-41021-2
PII: 10.1038/s41467-023-41021-2
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika MeSH
- Basidiomycota * MeSH
- ekzém * MeSH
- ječmen (rod) * genetika MeSH
- lipnicovité MeSH
- nemoci rostlin genetika MeSH
- regulace genové exprese MeSH
- rostlinné proteiny genetika MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Leaf rust, caused by Puccinia hordei, is one of the most widespread and damaging foliar diseases affecting barley. The barley leaf rust resistance locus Rph7 has been shown to have unusually high sequence and haplotype divergence. In this study, we isolate the Rph7 gene using a fine mapping and RNA-Seq approach that is confirmed by mutational analysis and transgenic complementation. Rph7 is a pathogen-induced, non-canonical resistance gene encoding a protein that is distinct from other known plant disease resistance proteins in the Triticeae. Structural analysis using an AlphaFold2 protein model suggests that Rph7 encodes a putative NAC transcription factor with a zinc-finger BED domain with structural similarity to the N-terminal DNA-binding domain of the NAC transcription factor (ANAC019) from Arabidopsis. A global gene expression analysis suggests Rph7 mediates the activation and strength of the basal defence response. The isolation of Rph7 highlights the diversification of resistance mechanisms available for engineering disease control in crops.
Zobrazit více v PubMed
Dracatos, P. M., Lu, J., Sánchez-Martín, J. & Wulff, B. B. H. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. Plant Biotechnol. J.10.1111/pbi.14106 (2023). PubMed PMC
Cotterill P, Rees R, Platz G, Dill-Macky R. Effects of leaf rust on selected Australian barleys. Aust. J. Exp. Agric. 1992;32:747–751.
Park RF, et al. Leaf rust of cultivated barley: pathology and control. Annu. Rev. Phytopathol. 2015;53:565–589. PubMed
Qi X, Niks RE, Stam P, Lindhout P. Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor. Appl. Genet. 1998;96:1205–1215.
Dracatos PM, Singh D, Bansal U, Park RF. Identification of new sources of adult plant resistance to Puccinia hordei in international barley (Hordeum vulgare L.) germplasm. Eur. J. Plant Pathol. 2015;141:463–476.
Elmansour H, Singh D, Dracatos PM, Park RF. Identification and characterization of seedling and adult plant resistance to Puccinia hordei in selected African barley germplasm. Euphytica. 2017;213:119.
Singh D, Dracatos PM, Loughman R, Park RF. Genetic mapping of resistance to Puccinia hordei in three barley doubled-haploid populations. Euphytica. 2016;213:16.
Singh D, et al. Genome-wide association studies provide insights on genetic architecture of resistance to leaf rust in a worldwide barley collection. Mol. Breed. 2018;38:43.
Rothwell CT, Singh D, Dracatos PM, Park RF. Inheritance and dharacterization of Rph27: A third race-specific resistance gene in the barley cultivar Quinn. Phytopathology. 2020;110:1067–1073. PubMed
Jost M, Singh D, Lagudah E, Park RF, Dracatos P. Fine mapping of leaf rust resistance gene Rph13 from wild barley. Theor. Appl. Genet. 2020;133:1887–1895. PubMed
Mehnaz M, et al. A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. Front. Plant Sci. 2022;13:980870. PubMed PMC
Mehnaz M, et al. Discovery and fine mapping of Rph28: a new gene conferring resistance to Puccinia hordei from wild barley. Theor. Appl. Genet. 2021;134:2167–2179. PubMed
Dracatos PM, et al. The coiled-coil NLR Rph1, confers leaf rust resistance in barley cultivar Sudan. Plant Physiol. 2019;179:1362–1372. PubMed PMC
Wang Y, et al. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nat. Plants. 2019;5:1129–1135. PubMed
Chen Y, et al. A collinearity-incorporating homology inference dtrategy for vonnecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant. 2020;13:1694–1708. PubMed
Dinh HX, et al. The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nat. Commun. 2022;13:2386. PubMed PMC
Dinh HX, Singh D, Periyannan S, Park RF, Pourkheirandish M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 2020;133:2035–2050. PubMed
Zhou J-M, Zhang Y. Plant immunity: danger perception and signaling. Cell. 2020;181:978–989. PubMed
Zhang J, Zhang P, Dodds P, Lagudah E. How target-sequence enrichment and sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-eust pathosystem. Front. Plant Sci. 2020;11:678. PubMed PMC
Sánchez-Martín J, Keller B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr. Opin. Plant Biol. 2021;62:102053. PubMed
Kolodziej MC, et al. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat. Commun. 2021;12:956. PubMed PMC
Roane C, Starling T. Inheritance of reaction to Puccinia hordei in barley. III. Genes in the cultivars Cebada Capa and Franger. Phytopathology. 1970;57:66–68.
Shtaya MJY, Sillero JC, Rubiales D. Identification of a new pathotype of Puccinia hordei with virulence for the resistance gene Rph7. Eur. J. Plant Pathol. 2006;116:103–106.
Golan T, Anikster Y, Moseman JG, Wahl I. A new virulent strain of Puccinia hordei. Euphytica. 1978;27:185–189.
Steffenson BJ, et al. Pathotypes of Puccinia hordei with virulence for the barley leaf rustresistance gene Rph7 in the United-States. Plant Dis. 1993;77:867–869.
Tuleen N, McDaniel M. Location of genes Pa and Pa5. Barley Newsl. 1971;15:106–107.
Graner A, et al. Molecular mapping of the leaf rust resistance gene Rph7 in barley. Plant Breed. 2000;119:389–392.
Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics. 2003;164:673–683. PubMed PMC
Scherrer B, et al. Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell. 2005;17:361–374. PubMed PMC
Walkowiak S, et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. PubMed PMC
Sánchez-Martín J, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. PubMed PMC
Jayakodi M, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 2020;588:284–289. PubMed PMC
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Holm L. Dali server: structural unification of protein families. Nucleic Acids Res. 2022;50:W210–W215. PubMed PMC
Welner DH, et al. DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem. J. 2012;444:395–404. PubMed
Gilmour J. Octal notation for designating physiologic races of plant pathogens. Nature. 1973;242:620–620.
Park RF, Karakousis A. Characterization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar ‘Reka 1’ and several Australian barleys. Plant Breed. 2002;121:232–236.
Chandler PM, Harding CA. ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ DELLA gene. J. Exp. Bot. 2013;64:1603–1613. PubMed PMC
Chen C, et al. BED domain-containing NLR from wild barley confers resistance to leaf rust. Plant Biotechnol. J. 2021;19:1206–1215. PubMed PMC
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data, https://github.com/s-andrews/FastQC.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. PubMed PMC
Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC
Danecek P, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. PubMed PMC
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. PubMed PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. PubMed PMC
Mascher M, et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021;33:1888–1906. PubMed PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Pettersen EF, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. PubMed PMC
Ortiz D, et al. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. New Phytol. 2022;234:592–606. PubMed PMC
Upadhyaya NM, et al. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. Nat. Plants. 2021;7:1220–1228. PubMed
Saur IML, et al. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors. Plant Methods. 2019;15:118. PubMed PMC
Luo M, et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 2021;39:561–566. PubMed