Temporal regulation of gene expression during auxin-triggered crown root formation in barley: an integrated approach
Jazyk angličtina Země Japonsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004581
TowArds Next GENeration Crops
ERDF Programme Johannes Amos Comenius
CZ.02.2.69/0.0/0.0/19_073/0016713
OP RDE
PubMed
40652302
PubMed Central
PMC12461856
DOI
10.1093/pcp/pcaf077
PII: 8198101
Knihovny.cz E-zdroje
- Klíčová slova
- ATAC-seq, Barley, DAP-seq, auxin, crown roots, transcriptomics,
- MeSH
- ječmen (rod) * genetika růst a vývoj metabolismus účinky léků MeSH
- kořeny rostlin * růst a vývoj genetika účinky léků metabolismus MeSH
- kyseliny indoloctové * metabolismus farmakologie MeSH
- regulace genové exprese u rostlin * účinky léků MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus genetika MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory metabolismus genetika MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové * MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Cereal plants possess a fibrous root system in which crown roots form the major component. Crown roots develop post-embryonically from the lower, mostly underground nodes of the stem base. A strict spatiotemporal regulation of gene expression governs this process. Much of the knowledge about signaling pathways controlling crown root initiation (CRI) and development comes from rice. However, distinct regulatory mechanisms may have evolved in other cereals to adapt to different habitats. In this study, using a Crown Root Inducible System (CRIS), we aimed to investigate the early molecular regulation of barley CRI. We revealed dynamic transcriptomic changes within the first 24 hours following auxin stimulation. Among the differentially expressed genes, we identified orthologs of important CRI regulators from other cereals, demonstrating that CRIS is suitable for uncovering genes involved in CRI. Further, ATAC-seq revealed that CRI relies on changes in chromatin accessibility near root development-related genes and within distal intergenic regions. Finally, we focused on two transcription factors, HvNAC013 and CBF12C, which likely play roles in both CRI and abiotic stresses. By performing DAP-seq, we determined their genome-wide binding sites and identified their potential downstream targets. Data suggest that CBF12C is a putative target of HvNAC013, along with other auxin-responsive genes implicated in CRI. We propose that HvNAC013 and CBF12C function as part of a transcription factor network involved in CRI and potentially modulate root architecture in response to environmental conditions. This study enhances our understanding of the CRI mechanism in barley.
Computational and Structural Biology EEAD CSIC Av Montañana 1 005 Zaragoza 50059 Spain
UMR DIADE Université de Montpellier IRD CIRAD Avenue Agropolis 911 Montpellier 34398 France
Zobrazit více v PubMed
Agusti, J. and Greb, T. (2013) Going with the wind—adaptive dynamics of plant secondary meristems. Mech. Dev. 130: 34–44. PubMed PMC
Ahn, H., Jung, I., Shin, S.J., Park, J., Rhee, S., Kim, J.K., et al. (2017) Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front. Plant Sci. 8: 1044. PubMed PMC
Aloni, R. and Griffith, M. (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184: 123–129. PubMed
Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bailey, T.L. and Grant, C.E. (2021) SEA: simple enrichment analysis of motifs. bioRxiv : 2021.08.23.457422.
Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. (1994) The 5′-region of PubMed
Barrett, L.W., Fletcher, S. and Wilton, S.D. (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 69: 3613–3634. PubMed PMC
Bartlett, A., O’Malley, R.C., Huang, S.C., Galli, M., Nery, J.R., Gallavotti, A., et al. (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12: 1659–1672. PubMed PMC
Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., et al. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602. PubMed
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. and Greenleaf, W.J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10: 1213–1218. PubMed PMC
Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst, A., et al. (2006) Cellulose synthase-like PubMed
Castro-Mondragon, J.A., Jaeger, S., Thieffry, D., Thomas-Chollier, M. and van Helden, J. (2017) RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. Nucleic Acids Res. 45: e119. PubMed PMC
Chen, W.F., Wei, X.B., Rety, S., Huang, L.Y., Liu, N.N., Dou, S.X., et al. (2019) Structural analysis reveals a “molecular calipers” mechanism for a LATERAL ORGAN BOUNDARIES DOMAIN transcription factor protein from wheat. J. Biol. Chem. 294: 142–156. PubMed PMC
Chen, C., Jost, M., Outram, M.A., Friendship, D., Chen, J., Wang, A., et al. (2023) A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley. Nat. Commun. 14: 5468. PubMed PMC
Chennakesavulu, K., Techer, A., Thiaw, M.R.N., Tran, H.L., Bergougnoux, V., Yadav, S.R., et al. (2024) Rice: Model plant for post-embryonic root developmental biology. In Plant Roots, edited by Beeckman, T. and Eshel, A., pp. 167–184. CRC Press, Boca Raton.
Christiansen, M.W., Holm, P.B. and Gregersen, P.L. (2011) Characterization of barley ( PubMed PMC
Christiansen, M.W., Matthewman, C., Podzimska-Sroka, D., O’Shea, C., Lindemose, S., Møllegaard, N.E., et al. (2016) Barley plants over-expressing the NAC transcription factor gene PubMed PMC
Chung, P.J., Jung, H., Choi, Y.D. and Kim, J.K. (2018) Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics 19: 40. PubMed PMC
Coudert, Y., Le, T.V.A. and Gantet, P. (2013) Rice: A model plant to decipher the hidden origin of adventitious roots. In Plant roots: the hidden half, edited by Eshel, A. and Beeckman, T., pp. 157–166. CRC Press, Boca Raton.
Coudert, Y., Le, T.V.A., Adam, H., Bès, M., Vignols, F., Jouannic, S., et al. (2015) Identification of CROWN ROOTLESS1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation. New Phytol. 206: 243–254. PubMed
Crombez, H., Roberts, I., Vangheluwe, N., Motte, H., Jansen, L., Beeckman, T., et al. (2016) Inducible system in PubMed PMC
Dasgupta, P., Das, A., Datta, S., Banerjee, I., Tripathy, S. and Chaudhuri, S. (2020) Understanding the early cold response mechanism in IR64 PubMed PMC
Den Herder, G., Van Isterdael, G., Beeckman, T. and De Smet, I. (2010) The roots of a new green revolution. Trends Plant Sci. 15: 600–607. PubMed
Ding, J., Karim, H., Li, Y., Harwood, W., Guzmán, C., Lin, N., et al. (2021) Re-examination of the PubMed PMC
Doležel, J., Binarová, P. and Lucretti, S. (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31: 113–120.
Dong, X., Jiang, Y., Yang, Y., Xiao, Z., Bai, X., Gao, J., et al. (2019) Identification and expression analysis of the NAC gene family in
Emms, D.M. and Kelly, S. (2022) SHOOT: phylogenetic gene search and ortholog inference. Genome Biol. 23: 85. PubMed PMC
Erpen, L., Devi, H.S., Grosser, J.W. and Dutt, M. (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult. 132: 1–25.
FAO (2024) FAOSTAT: Crops and livestock products. Extracted from: https://www.fao.org/faostat/en/#data/QCL (January 7, 2025, date last accessed).
Francischini, C.W. and Quaggio, R.B. (2009) Molecular characterization of PubMed
Gao, S., Fang, J., Xu, F., Wang, W., Sun, X., Chu, J., et al. (2014) PubMed PMC
Garg, T., Singh, Z., Chennakesavulu, K., Mushahary, K.K.K., Dwivedi, A.K., Varapparambathu, V., et al. (2022) Species-specific function of conserved regulators in orchestrating rice root architecture. Development 149: dev200381. PubMed
Garg, T., Yadav, M., Mushahary, K.K.K., Kumar, A., Pal, V., Singh, H., et al. (2023) Spatially activated conserved auxin-transcription factor regulatory module controls de novo root organogenesis in rice. Planta 258: 52. PubMed
Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., et al. (2003) The PubMed
Geng, L., Li, Q., Jiao, L., Xiang, Y., Deng, Q., Zhou, D.X., et al. (2023) WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. New Phytol. 237: 204–216. PubMed
Geng, L., Tan, M., Deng, Q., Wang, Y., Zhang, T., Hu, X., et al. (2024) Transcription factors WOX11 and LBD16 function with histone demethylase JMJ706 to control crown root development in rice. Plant Cell 36: 1777–1790. PubMed PMC
Girgis, H.Z. (2015) Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinform. 16: 227. PubMed PMC
Gonin, M., Jeong, K., Coudert, Y., Lavarenne, J., Hoang, G.T., Bes, M., et al. (2022) CROWN ROOTLESS1 binds DNA with a relaxed specificity and activates PubMed PMC
Gou, J., Strauss, S.H., Tsai, C.J., Fang, K., Chen, Y., Jiang, X., et al. (2010) Gibberellins regulate lateral root formation in PubMed PMC
Gürel, F., Öztürk, Z.N., Uçarlı, C. and Rosellini, D. (2016) Barley genes as tools to confer abiotic stress tolerance in crops. Front. Plant Sci. 7: 1137. PubMed PMC
Gutierrez, L., Mongelard, G., Floková, K., Pacurar, D.I., Novák, O., Staswick, P., et al. (2012) Auxin controls PubMed PMC
Hackett, C. (1968) A study of the root system of barley. I. Effects of nutrition on two varieties. New Phytol. 67: 287–299.
Han, K., Zhao, Y., Sun, Y. and Li, Y. (2023) NACs, generalist in plant life. Plant Biotechnol. J. 21: 2433–2457. PubMed PMC
Hao, Y.J., Song, Q.X., Chen, H.W., Zou, H.F., Wei, W., Kang, X.S., et al. (2010) Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232: 1033–1043. PubMed
Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. and Minghim, R. (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16: 169. PubMed PMC
Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. (1996) Isolation and characterization of
Huang, T., Kerstetter, R.A. and Irish, V.F. (2014) APUM23, a PUF family protein, functions in leaf development and organ polarity in PubMed PMC
Huangwei, C., Wanqi, L., Juan, L., Fan, H., Yunfei, W., Likai, W., et al. (2013) A CLE–WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. J. Exp. Bot. 64: 5359–5369. PubMed
Husbands, A., Bell, E.M., Shuai, B., Smith, H.M.S. and Springer, P.S. (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res. 35: 6663–6671. PubMed PMC
Hussien, A., Tavakol, E., Horner, D.S., Muñoz-Amatriaín, M., Muehlbauer, G.J. and Rossini, L. (2014) Genetics of tillering in rice and barley. Plant Genome 7: plantgenome2013.10.0032.
Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Shibata, Y., Gomi, K., Umemura, I., et al. (2005) PubMed PMC
Ioio, R.D., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P., et al. (2007) Cytokinins determine PubMed
Itoh, J.I., Nonomura, K.I., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., et al. (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46: 23–47. PubMed
Jackson, V.G. (1922) Anatomical structure of the roots of barley. Ann. Bot. 36: 21–39.
Jalili, V., Matteucci, M., Masseroli, M. and Morelli, M.J. (2015) Using combined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics 31: 2761–2769. PubMed
Jansen, L., Hollunder, J., Roberts, I., Forestan, C., Fonteyne, P., Van Quickenborne, C., et al. (2013) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol. J. 11: 1092–1102. PubMed
Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Choi, Y.D., et al. (2010) Root-specific expression of PubMed PMC
Kamiya, N., Itoh, J.I., Morikami, A., Nagato, Y. and Matsuoka, M. (2003a) The PubMed
Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y. and Matsuoka, M. (2003b) Isolation and characterization of a rice PubMed
Kang, J., Peng, Y. and Xu, W. (2022) Crop root responses to drought stress: molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 23: 9310. PubMed PMC
Kim, D., Paggi, J.M., Park, C., Bennett, C. and Salzberg, S.L. (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37: 907–915. PubMed PMC
Kim, G., Ryu, H. and Sung, J. (2022) Hormonal crosstalk and root suberization for drought stress tolerance in plants. Biomolecules 12: 811. PubMed PMC
Kitomi, Y., Ogawa, A., Kitano, H. and Inukai, Y. (2008) CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2: 19–28.
Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H. and Inukai, Y. (2011) The auxin responsive AP2/ERF transcription factor PubMed
Kjaersgaard, T., Jensen, M.K., Christiansen, M.W., Gregersen, P., Kragelund, B.B. and Skriver, K. (2011) Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J. Biol. Chem. 286: 35418–35429. PubMed PMC
Klasfeld, S., Roulé, T. and Wagner, D. (2022) Greenscreen: a simple method to remove artifactual signals and enrich for true peaks in genomic datasets including ChIP-seq data. Plant Cell 34: 4795–4815. PubMed PMC
Klaus, A., Marcon, C. and Hochholdinger, F. (2024) Spatiotemporal transcriptomic plasticity in barley roots: unravelling water deficit responses in distinct root zones. BMC Genomics 25: 79. PubMed PMC
Knipfer, T. and Fricke, W. (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley ( PubMed PMC
Kokáš, F., Vojta, P. and Galuszka, P. (2016) Dataset for transcriptional response of barley ( PubMed PMC
Kolberg, L., Raudvere, U., Kuzmin, I., Adler, P., Vilo, J. and Peterson, H. (2023) G:profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51: W207–W212. PubMed PMC
Kong, W., Zhang, Y., Deng, X., Li, S., Zhang, C. and Li, Y. (2019) Comparative genomic and transcriptomic analysis suggests the evolutionary dynamic of PubMed PMC
Korasick, D.A., Jez, J.M. and Strader, L.C. (2015) Refining the nuclear auxin response pathway through structural biology. Curr. Opin. Plant Biol. 27: 22–28. PubMed PMC
Krueger, F. (2023) TrimGalore, GitHub repository. Available online at: https://github.com/FelixKrueger/TrimGalore
Kumar, A., Verma, K., Kashyap, R., Joshi, V.J., Sircar, D. and Yadav, S.R. (2024) Auxin-responsive ROS homeostasis genes display dynamic expression pattern during rice crown root primordia morphogenesis. Plant Physiol. Biochem. 206: 108307. PubMed
Lang, Z., Wang, Y., Tang, K., Tang, D., Datsenka, T., Cheng, J., et al. (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl. Acad. Sci. USA 114: E4511–E4519. PubMed PMC
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with bowtie 2. Nat. Methods 9: 357–359. PubMed PMC
Langmead, B., Wilks, C., Antonescu, V. and Charles, R. (2019) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35: 421–432. PubMed PMC
Lavarenne, J., Gonin, M., Guyomarc’h, S., Rouster, J., Champion, A., Sallaud, C., et al. (2019) Inference of the gene regulatory network acting downstream of CROWN ROOTLESS 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance. Plant J. 100: 954–968. PubMed
Lavarenne, J., Gonin, M., Champion, A., Javelle, M., Adam, H., Rouster, J., et al. (2020) Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS One 15: e0238736. PubMed PMC
Lee, H.W., Kang, N.Y., Pandey, S.K., Cho, C., Lee, S.H. and Kim, J. (2017) Dimerization in LBD16 and LBD18 transcription factors is critical for lateral root formation. Plant Physiol. 174: 301–311. PubMed PMC
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002) PlantCARE, a database of plant PubMed PMC
Lewis, D.R., Olex, A.L., Lundy, S.R., Turkett, W.H., Fetrow, J.S. and Muday, G.K. (2013) A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in PubMed PMC
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Li, X., Guo, Z., Lv, Y., Cen, X., Ding, X., Wu, H., et al. (2017) Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet. 13: e1006889. PubMed PMC
Liao, Y., Smyth, G.K. and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923–930. PubMed
Lima, J.M., Nath, M., Dokku, P., Raman, K.V., Kulkarni, K.P., Vishwakarma, C., et al. (2015) Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants 7: plv023. PubMed PMC
Lindemose, S., Jensen, M.K., Van de Velde, J., O’Shea, C., Heyndrickx, K.S., Workman, C.T., et al. (2014) A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in PubMed PMC
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in PubMed PMC
Liu, H., Wang, S., Yu, X., Yu, J., He, X., Zhang, S., et al. (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 43: 47–56. PubMed
Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. PubMed PMC
Lu, Z., Marand, A.P., Ricci, W.A., Ethridge, C.L., Zhang, X. and Schmitz, R.J. (2019) The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat Plants 5: 1250–1259. PubMed
Lun, A.T.L. and Smyth, G.K. (2014) PubMed PMC
Lun, A.T.L. and Smyth, G.K. (2016) Csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 44: e45. PubMed PMC
Mao, C., He, J., Liu, L., Deng, Q., Yao, X., Liu, C., et al. (2020) OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol. J. 18: 429–442. PubMed PMC
Mascher, M., Wicker, T., Jenkins, J., Plott, C., Lux, T., Koh, C.S., et al. (2021) Long-read sequence assembly: a technical evaluation in barley. Plant Cell 33: 1888–1906. PubMed PMC
Mathew, I.E., Das, S., Mahto, A. and Agarwal, P. (2016) Three rice NAC transcription factors heteromerize and are associated with seed size. Front. Plant Sci. 7: 1638. PubMed PMC
Matsuzaki, Y., Ogawa-Ohnishi, M., Mori, A. and Matsubayashi, Y. (2010) Secreted peptide signals required for maintenance of root stem cell niche in PubMed
Meng, F., Xiang, D., Zhu, J., Li, Y. and Mao, C. (2019) Molecular mechanisms of root development in rice. Rice 12: 1. PubMed PMC
Moon, S.J., Min, M.K., Kim, J.A., Kim, D.Y., Yoon, I.S., Kwon, T.R., et al. (2019) Ectopic expression of PubMed PMC
Motte, H., Parizot, B., Xuan, W., Chen, Q., Maere, S., Bensmihen, S., et al. (2023) Interspecies co-expression analysis of lateral root development using inducible systems in rice, PubMed
Murozuka, E., Massange-Sánchez, J.A., Nielsen, K., Gregersen, P.L. and Braumann, I. (2018) Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One 13: e0209769. PubMed PMC
Navrátilová, P., Toegelová, H., Tulpová, Z., Kuo, Y.-T., Stein, N., Doležel, J., et al. (2022) Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnol. J. 20: 1373–1386. PubMed PMC
Neogy, A., Garg, T., Kumar, A., Dwivedi, A.K., Singh, H., Singh, U., et al. (2019) Genome-wide transcript profiling reveals an auxin-responsive transcription factor, OsAP2/ERF-40, promoting rice adventitious root development. Plant Cell Physiol. 60: 2343–2355. PubMed
Neogy, A., Singh, Z., Mushahary, K.K.K. and Yadav, S.R. (2021) Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development. Plant Cell Rep. 40: 1367–1375. PubMed
Nguyen, D.T., Zavadil Kokáš, F., Gonin, M., Lavarenne, J., Colin, M., Gantet, P., et al. (2024) Transcriptional changes during crown-root development and emergence in barley ( PubMed PMC
Nguyen, D.T., Gonin, M., Motyka, M., Champion, A., Hensel, G., Gantet, P., et al. (2025) Two lateral organ boundary domain transcription factors DOI
Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., et al. (2021) Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci. Rep. 11: 6280. PubMed PMC
Oh, S.J., Kim, Y.S., Kwon, C.W., Park, H.K., Jeong, J.S. and Kim, J.K. (2009) Overexpression of the transcription factor PubMed PMC
Omary, M., Gil-Yarom, N., Yahav, C., Steiner, E., Hendelman, A. and Efroni, I. (2022) A conserved superlocus regulates above- and belowground root initiation. Science 375: eabf4368. PubMed
Pallotta, M.A., Graham, R.D., Langridge, P., Sparrow, D.H.B. and Barker, S.J. (2000) RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet. 101: 1100–1108.
Pasquariello, M., Barabaschi, D., Himmelbach, A., Steuernagel, B., Ariyadasa, R., Stein, N., et al. (2014) The barley PubMed
Pavlu, S., Nikumbh, S., Kovacik, M., An, T., Lenhard, B., Simkova, H., et al. (2024) Core promoterome of barley embryo. Comput. Struct. Biotechnol. J. 23: 264–277. PubMed PMC
Perez-Garcia, P., Pucciariello, O., Sanchez-Corrionero, A., Cabrera, J., Del Barrio, C., Del Pozo, J.C., et al. (2023) The cold-induced factor CBF3 mediates root stem cell activity, regeneration, and developmental responses to cold. Plant Commun. 4: 100737. PubMed PMC
Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. PubMed PMC
Price, A., Caciula, A., Guo, C., Lee, B., Morrison, J., Rasmussen, A., et al. (2019) Devis: an R package for aggregation and visualization of differential expression data. BMC Bioinform. 20: 110. PubMed PMC
Ramakrishna, P., Ruiz Duarte, P., Rance, G.A., Schubert, M., Vordermaier, V., Vu, L.D., et al. (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc. Natl. Acad. Sci. USA 116: 8597–8602. PubMed PMC
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., et al. (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44: W160–W165. PubMed PMC
Reske, J.J., Wilson, M.R. and Chandler, R.L. (2020) ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation. Epigenetics Chromatin 13: 22. PubMed PMC
Riaz, A., Alqudah, A.M., Kanwal, F., Pillen, K., Ye, L.-z., Dai, F., et al. (2023) Advances in studies on the physiological and molecular regulation of barley tillering. J. Integr. Agric. 22: 1–13.
Ricci, W.A., Lu, Z., Ji, L., Marand, A.P., Ethridge, C.L., Murphy, N.G., et al. (2019) Widespread long-range PubMed PMC
Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., et al. (2011) Integrative genomics viewer. Nat. Biotechnol. 29: 24–26. PubMed PMC
Rossini, L., Muehlbauer, G.J., Okagaki, R., Salvi, S. and von Korff, M. (2018) Genetics of whole plant morphology and architecture. In The Barley Genome, edited by Stein, N. and Muehlbauer, G.J., pp. 209–231. Springer International Publishing, Cham.
Russell, J., Mascher, M., Dawson, I.K., Kyriakidis, S., Calixto, C., Freund, F., et al. (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 48: 1024–1030. PubMed
Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the ERF/AP2 domain of PubMed
Schwacke, R., Ponce-Soto, G.Y., Krause, K., Bolger, A.M., Arsova, B., Hallab, A., et al. (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12: 879–892. PubMed
Sebastian, A. and Contreras-Moreira, B. (2014) footprintDB: a database of transcription factors with annotated PubMed
Seo, P.J., Kim, M.J., Song, J.S., Kim, Y.S., Kim, H.J. and Park, C.M. (2010) Proteolytic processing of an PubMed
Serrano-Ron, L., Perez-Garcia, P., Sanchez-Corrionero, A., Gude, I., Cabrera, J., Ip, P.L., et al. (2021) Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation. Mol. Plant 14: 1362–1378. PubMed PMC
Shen, H., Yin, Y., Chen, F., Xu, Y. and Dixon, R.A. (2009) A bioinformatic analysis of
Shi, Q., Zhang, Y., To, V.T., Shi, J., Zhang, D. and Cai, W. (2020) Genome-wide characterization and expression analyses of the PubMed PMC
Skinner, J.S., von Zitzewitz, J., Szűcs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., et al. (2005) Structural, functional, and phylogenetic characterization of a large PubMed
Smit, M.E., McGregor, S.R., Sun, H., Gough, C., Bågman, A.M., Soyars, C.L., et al. (2020) A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in PubMed PMC
Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., et al. (2005) Characterization of an PubMed PMC
Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., et al. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316–318. PubMed
Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B., Hirschm, C.N., Buell, C.R., de Leon, N., et al. (2016) An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome 9: plantgenome2015.04.0025. PubMed
Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997) PubMed PMC
Szurman-Zubrzycka, M.E., Zbieszczyk, J., Marzec, M., Jelonek, J., Chmielewska, B., Kurowska, M.M., et al. (2018) PubMed PMC
Taketa, S., Yuo, T., Tonooka, T., Tsumuraya, Y., Inagaki, Y., Haruyama, N., et al. (2012) Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J. Exp. Bot. 63: 381–392. PubMed PMC
Tanaka, W., Yamauchi, T. and Tsuda, K. (2023) Genetic basis controlling rice plant architecture and its modification for breeding. Breed. Sci. 73: 3–45. PubMed PMC
Taramino, G., Sauer, M., Stauffer, J.L., Multani, D., Niu, X., Sakai, H., et al. (2007) The maize ( PubMed
Taylor, S.C., Nadeau, K., Abbasi, M., Lachance, C., Nguyen, M. and Fenrich, J. (2019) The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 37: 761–774. PubMed
Thomas-Chollier, M., Herrmann, C., Defrance, M., Sand, O., Thieffry, D. and van Helden, J. (2012) RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res. 40: e31. PubMed PMC
Tombuloglu, H. (2019) Genome-wide analysis of the auxin response factors (ARF) gene family in barley (
Tu, S., Li, M., Chen, H., Tan, F., Xu, J., Waxman, D.J., et al. (2021) Manorm2 for quantitatively comparing groups of ChIP-seq samples. Genome Res. 31: 131–145. PubMed PMC
Van Helden, J., André, B. and Collado-Vides, J. (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281: 827–842. PubMed
Vermeer, J.E., von Wangenheim, D., Barberon, M., Lee, Y., Stelzer, E.H., Maizel, A., et al. (2014) A spatial accommodation by neighboring cells is required for organ initiation in PubMed
Von Bothmer, R., Sato, K., Komatsuda, T., Yasuda, S. and Fischbeck, G. (2003) The domestication of cultivated barley. In Diversity in Barley (
Voß, U., Wilson, M.H., Kenobi, K., Gould, P.D., Robertson, F.C., Peer, W.A., et al. (2015) The circadian clock rephases during lateral root organ initiation in PubMed PMC
Wang, G., Wang, G., Zhang, X., Wang, F. and Song, R. (2012) Isolation of high quality RNA from cereal seeds containing high levels of starch. Phytochem. Anal. 23: 159–163. PubMed
Wang, Q., Li, M., Wu, T., Zhan, L., Li, L., Chen, M., et al. (2022) Exploring epigenomic datasets by ChIPseeker. Curr. Protoc. 2: e585. PubMed
Weber, B., Zicola, J., Oka, R. and Stam, M. (2016) Plant enhancers: a call for discovery. Trends Plant Sci. 21: 974–987. PubMed
Willems, E., Leyns, L. and Vandesompele, J. (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal. Biochem. 379: 127–129. PubMed
Woodward, E.J. and Marshall, C. (1988) Effects of plant growth regulators and nutrient supply on tiller bud outgrowth in barley (
Xie, Q., Frugis, G., Colgan, D. and Chua, N.H. (2000) PubMed PMC
Xie, Z., Nolan, T.M., Jiang, H. and Yin, Y. (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in PubMed PMC
Xie, C., Li, C., Wang, F., Zhang, F., Liu, J., Wang, J., et al. (2023) NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in PubMed
Xu, P., Ma, W., Feng, H. and Cai, W. (2024) The NAC056 transcription factor confers freezing tolerance by positively regulating expression of PubMed PMC
Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel PubMed PMC
Yang, Y., Al-Baidhani, H.H.J., Harris, J., Riboni, M., Li, Y., Mazonka, I., et al. (2020) DREB/CBF expression in wheat and barley using the stress-inducible promoters of PubMed PMC
Yates, A.D., Allen, J., Amode, R.M., Azov, A.G., Barba, M., Becerra, A., et al. (2022) Ensembl genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res. 50: D996–D1003. PubMed PMC
Yu, G., Wang, L.G. and He, Q.Y. (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31: 2382–2383. PubMed
Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.L., Chen, H., et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in PubMed
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9: R137. PubMed PMC
Zhao, Y., Hu, Y., Dai, M., Huang, L. and Zhou, D.X. (2009) The WUSCHEL-related homeobox gene PubMed PMC
Zhao, Y., Cheng, S., Song, Y., Huang, Y., Zhou, S., Liu, X., et al. (2015) The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27: 2469–2483. PubMed PMC
Zhou, S., Jiang, W., Long, F., Cheng, S., Yang, W., Zhao, Y., et al. (2017) Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29: 1088–1104. PubMed PMC
Zhou, Y., Sommer, M.L. and Hochholdinger, F. (2021) Cold response and tolerance in cereal roots. J. Exp. Bot. 72: 7474–7481. PubMed