Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.)

. 2024 May 22 ; 24 (1) : 438. [epub] 20240522

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38778283
Odkazy

PubMed 38778283
PubMed Central PMC11110440
DOI 10.1186/s12870-024-05160-y
PII: 10.1186/s12870-024-05160-y
Knihovny.cz E-zdroje

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.

Zobrazit více v PubMed

Gonin, Bergougnoux, Nguyen, Gantet, Champion What makes adventitious roots? Plants. 2019;8:240. doi: 10.3390/plants8070240. PubMed DOI PMC

López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6:280–287. doi: 10.1016/S1369-5266(03)00035-9. PubMed DOI

Gao Y, Lynch JP. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.) J Ex Bot. 2016;67:4545–57. doi: 10.1093/jxb/erw243. PubMed DOI PMC

Li X, Zeng R, Liao H. Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol. 2016;58:193–202. doi: 10.1111/jipb.12434. PubMed DOI

Li A, Zhu L, Xu W, Liu L, Teng G. Recent advances in methods for in situ root phenotyping. PeerJ. 2022;10:e13638. doi: 10.7717/peerj.13638. PubMed DOI PMC

Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437(7058):529–533. doi: 10.1038/nature03972. PubMed DOI

Ray DK, Gerber JS, Macdonald GK, West PC. Climate variation explains a third of global crop yield variability. Nat Commun. 2015;6(1):5989. doi: 10.1038/ncomms6989. PubMed DOI PMC

Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol. 2014;65:639–666. doi: 10.1146/annurev-arplant-050213-035645. PubMed DOI

Smith S, De Smet I. Root system architecture: insights from arabidopsis and cereal crops. Philos Trans R Soc B Biol Sci. 2012;367:1441–1452. doi: 10.1098/rstb.2011.0234. PubMed DOI PMC

Atkinson JA, Rasmussen A, Traini R, Voss U, Sturrock C, Mooney SJ, et al. Branching Out in Roots: uncovering form, function and regulation. Plant Physiol. 2014;166:538–550. doi: 10.1104/pp.114.245423. PubMed DOI PMC

Lo S-F, Fan M-J, Hsing Y-I, Chen L-J, Chen S, Wen I-C, et al. Genetic resources offer efficient tools for rice functional genomics research. Plant Cell Environ. 2016;39(5):998–1013. doi: 10.1111/pce.12632. PubMed DOI

Mai CD, Phung NT, To HT, Gonin M, Hoang GT, Nguyen KL, et al. Genes controlling root development in rice. Rice (N Y) 2014;7(1):30. doi: 10.1186/s12284-014-0030-5. PubMed DOI PMC

Meng F, Xiang D, Zhu J, Li Y, Mao C. Molecular mechanisms of root development in rice. Rice. 2019;12(1):1. doi: 10.1186/s12284-018-0262-x. PubMed DOI PMC

Pasam RK, Sharma R, Walther A, Özkan H, Graner A, Kilian B. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS One. 2014;9:1–29. doi: 10.1371/journal.pone.0116164. PubMed DOI PMC

Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, et al. Genebank genomics highlights the diversity of a global barley collection. Nat Genet. 2019;51:319–326. doi: 10.1038/s41588-018-0266-x. PubMed DOI

Mayer KFX, Martis M, Hedley PE, Simková H, Liu H, Morris JA, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23:1249–1263. doi: 10.1105/tpc.110.082537. PubMed DOI PMC

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI

Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh CS, et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021;33(6):1888–1906. doi: 10.1093/plcell/koab077. PubMed DOI PMC

Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. doi: 10.1186/s13059-019-1899-5. PubMed DOI PMC

Marthe C, Kumlehn J, Hensel G. Barley (Hordeum vulgare L.) transformation using immature embryos. In: Wang K, editor. Agrobacterium Protocols: Volume 1. Springer, New York: New York, NY; 2015. pp. 71–83. PubMed

Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J. 2006;4:251–61. doi: 10.1111/j.1467-7652.2005.00178.x. PubMed DOI

Vlamis J, Williams DE. Ion competition in Manganese uptake by barley plants. Plant Physiol. 1962;37:650–655. doi: 10.1104/pp.37.5.650. PubMed DOI PMC

Lavarenne J, Gonin M, Guyomarc'h S, Rouster J, Champion A, Sallaud C, et al. Inference of the gene regulatory network acting downstream of CROWN ROOTLESS 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance. Plant J. 2019;100:954–968. doi: 10.1111/tpj.14487. PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Mergemann H, Sauter M. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 2000;124:609–614. doi: 10.1104/pp.124.2.609. PubMed DOI PMC

International Barley Genome Sequencing C A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711–6. doi: 10.1038/nature11543. PubMed DOI

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31(2):166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014;37:1250–1258. doi: 10.1111/pce.12231. PubMed DOI

Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12:879–892. doi: 10.1016/j.molp.2019.01.003. PubMed DOI

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI

Klie S, Nikoloski Z. The choice between MapMan and gene ontology for automated gene function prediction in plant science. Front Genet. 2012;3:115. doi: 10.3389/fgene.2012.00115. PubMed DOI PMC

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform. 2008;2008:1–5. doi: 10.1155/2008/420747. PubMed DOI PMC

Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80(1):75–84. doi: 10.1007/s11103-012-9885-2. PubMed DOI

Hua W, Zhu J, Shang Y, Wang J, Jia Q, Yang J. Identification of suitable reference genes for barley gene expression under abiotic stresses and hormonal treatments. Plant Mol Biol Rep. 2015;33(4):1002–1012. doi: 10.1007/s11105-014-0807-0. DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Chow C-N, Lee T-Y, Hung Y-C, Li G-Z, Tseng K-C, Liu Y-H, et al. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 2019;47:D1155–D63. doi: 10.1093/nar/gky1081. PubMed DOI PMC

Coudert Y, Périn C, Courtois B, Khong NG, Gantet P. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 2010;15:219–226. doi: 10.1016/j.tplants.2010.01.008. PubMed DOI

Coudert Y, Le VAT, Gantet P. Rice: a model plant to decipher the hidden origin of adventitious roots. Plant roots, the hidden half. 2013.

Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, et al. Rice plant development: From zygote to spikelet. Plant Cell Physiol. 2005;46:23–47. doi: 10.1093/pcp/pci501. PubMed DOI

Xu J, Hong JH. Root Development. In: Zhang Q, Wing R, editors. Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. New York: Springer; 2013. 10.1007/978-1-4614-7903-1_20.

Hochholdinger F, Woll K, Sauer M, Dembinsky D. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot. 2004;93(4):359–368. doi: 10.1093/aob/mch056. PubMed DOI PMC

Li J, Xu Y, Chong K. The novel functions of kinesin motor proteins in plants. Protoplasma. 2012;249:95–100. doi: 10.1007/s00709-011-0357-3. PubMed DOI PMC

Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inzé D, Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell. 2002;14(10):2339–2351. doi: 10.1105/tpc.004960. PubMed DOI PMC

Fukaki H, Okushima Y, Tasaka M. Auxin-mediated lateral root formation in higher plants. Int Rev Cytol.2007;256:111-37. 10.1016/S0074-7696(07)56004-3. PubMed

Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science. 2010;329:1306–1311. doi: 10.1126/science.1191937. PubMed DOI PMC

Kitomi Y, Ogawa A, Kitano H, Inukai Y. CRL4 regulates crown root formation through auxin transport in rice. Plant Root. 2008;2:19–28. doi: 10.3117/plantroot.2.19. DOI

Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, et al. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res. 2009;19:1110–1119. doi: 10.1038/cr.2009.70. PubMed DOI

LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem. 2002;277:20446–20452. doi: 10.1074/jbc.M111955200. PubMed DOI

Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135(2)978–88. 10.1104/pp.104.039677. PubMed PMC

Humplík JF, Bergougnoux V, Van Volkenburgh E. To stimulate or inhibit? That is the question for the function of abscisic acid. Trends Plant Sci. 2017;xx:1–12. PubMed

Harris J. Abscisic acid: hidden architect of root system structure. Plants. 2015;4:548–572. doi: 10.3390/plants4030548. PubMed DOI PMC

Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, et al. Gibberellins regulate lateral root formation in populus through interactions with auxin and other hormones. Plant Cell. 2010;22:623–639. doi: 10.1105/tpc.109.073239. PubMed DOI PMC

Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell. 2008;20:2603–2618. doi: 10.1105/tpc.108.060913. PubMed DOI PMC

Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell. 2001;13:999–1010. doi: 10.1105/tpc.13.5.999. PubMed DOI PMC

Charlton W. Lateral root initiation. In: Waisel Y, Eshel A, Kfkaki U, editors. Plant roots, the hidden half. 2. Marcel Dekker: New York; 1996. pp. 149–73.

Park WJ, Hochholdinger F, Gierl A. Release of the benzoxazinoids defense molecules during lateral- and crown root emergence in Zea mays. J Plant Physiol. 2004;161:981–985. doi: 10.1016/j.jplph.2004.01.005. PubMed DOI

Steffens B, Kovalev A, Gorb SN, Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell. 2012;24:3296–3306. doi: 10.1105/tpc.112.101790. PubMed DOI PMC

Steffens B, Sauter M. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell. 2009;21:184–196. doi: 10.1105/tpc.108.061887. PubMed DOI PMC

Passarinho PA, de Vries SC. Arabidopsis Chitinases : a genomic survey. Arabidopsis Book. 2002;1:e0023. doi: 10.1199/tab.0023. PubMed DOI PMC

Kim DS, Kim NH, Hwang BK. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. J Exp Bot. 2015;66:1987–1999. doi: 10.1093/jxb/erv001. PubMed DOI PMC

Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 2009;14(7):399-408. 10.1016/j.tplants.2009.05.002. PubMed

Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol. 2008;10:946–954. doi: 10.1038/ncb1754. PubMed DOI

Roycewicz PS, Malamy JE. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root. J Exp Bot. 2014;65:2057–2069. doi: 10.1093/jxb/eru056. PubMed DOI PMC

Makowska B, Bakera B, Rakoczy-Trojanowska M. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant. 2015;37:1–12. doi: 10.1007/s11738-015-1927-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...