What Makes Adventitious Roots?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
38067ZF
Partenariat Hubert Curien Barrande
7AMB17FR04
Ministry of education youth and sports, Czech Republic
CZ.02.1.01./0.0/0.0/16_019/0000827
ERDF project "Plants as a tool for sustainable global development"
CRP-RICE, 2017-2022
Consultative Group for International Agricultural Research Program on rice-agrifood systems
PubMed
31336687
PubMed Central
PMC6681363
DOI
10.3390/plants8070240
PII: plants8070240
Knihovny.cz E-zdroje
- Klíčová slova
- adventitious root, genetic control, phytohormones, plant development, response to the environment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Zobrazit více v PubMed
Bellini C., Pacurar D.I., Perrone I. Adventitious Roots and Lateral Roots: Similarities and Differences. Annu. Rev. Plant Biol. 2014;65:639–666. doi: 10.1146/annurev-arplant-050213-035645. PubMed DOI
Rebouillat J., Dievart A., Verdeil J.L., Escoute J., Giese G., Breitler J.C., Gantet P., Espeout S., Guiderdoni E., Périn C. Molecular Genetics of Rice Root Development. Rice. 2009;2:15–34. doi: 10.1007/s12284-008-9016-5. DOI
Coudert Y., Le T.V.A., Gantet P. Rice: A Model Plant to Decipher the Hidden Origin of Adventitious Roots. Plant Roots Hidden Half. 2013;4:157–166.
Coudert Y., Périn C., Courtois B., Khong N.G., Gantet P. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 2010;15:219–226. doi: 10.1016/j.tplants.2010.01.008. PubMed DOI
Hochholdinger F., Woll K., Sauer M., Dembinsky D. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann. Bot. 2004;93:359–368. doi: 10.1093/aob/mch056. PubMed DOI PMC
Druege U., Franken P., Hajirezaei M.R. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. Front. Plant Sci. 2016;7:1–14. doi: 10.3389/fpls.2016.00381. PubMed DOI PMC
Lakehal A., Bellini C. Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiol. Plant. 2019;165:90–100. doi: 10.1111/ppl.12823. PubMed DOI
Lynch J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013;112:347–357. doi: 10.1093/aob/mcs293. PubMed DOI PMC
Bodley J.H., Benson F.C. Stilt-Root Walking by an Iriateoid Palm in the Peruvian Amazon. Biotropica. 1980;12:67–71. doi: 10.2307/2387775. DOI
Goldsmith G.R., Zahawi R.A. The function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae) at two neotropical sites. Rev. Biol. Trop. 2007;55:787–793. doi: 10.15517/rbt.v55i3-4.5955. PubMed DOI
Sukumar P., Maloney G.S., Muday G.K. Localized Induction of the ATP-Binding Cassette B19 Auxin Transporter Enhances Adventitious Root Formation in Arabidopsis. Plant Physiol. 2013;162:1392–1405. doi: 10.1104/pp.113.217174. PubMed DOI PMC
Da Rocha Correa L., Troleis J., Mastroberti A.A., Mariath J.E.A., Fett-Neto A.G. Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol. 2012;14:100–109. doi: 10.1111/j.1438-8677.2011.00468.x. PubMed DOI
Verstraeten I., Schotte S., Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Front. Plant Sci. 2014;5:1–13. doi: 10.3389/fpls.2014.00495. PubMed DOI PMC
Della Rovere F., Fattorini L., D’Angeli S., Veloccia A., Falasca G., Altamura M.M. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of arabidopsis. Ann. Bot. 2013;112:1395–1407. doi: 10.1093/aob/mct215. PubMed DOI PMC
Atkinson J.A., Rasmussen A., Traini R., Voss U., Sturrock C., Mooney S.J., Wells D.M., Bennett M.J. Branching Out in Roots: Uncovering Form, Function, and Regulation. Plant Physiol. 2014;166:538–550. doi: 10.1104/pp.114.245423. PubMed DOI PMC
Bustillo-Avendaño E., Ibáñez S., Sanz O., Sousa Barros J.A., Gude I., Perianez-Rodriguez J., Micol J.L., Del Pozo J.C., Moreno-Risueno M.A., Pérez-Pérez J.M. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis. Plant Physiol. 2018;176:1709–1727. doi: 10.1104/pp.17.00980. PubMed DOI PMC
Morita M.T., Saito C., Nakano A., Tasaka M. Endodermal-amyloplast less 1 is a novel allele of Short-Root. Adv. Sp. Res. 2007;39:1127–1133. doi: 10.1016/j.asr.2006.12.020. DOI
Sugimoto K., Jiao Y., Meyerowitz E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell. 2010;18:463–471. doi: 10.1016/j.devcel.2010.02.004. PubMed DOI
Kong X., Lu S., Tian H., Ding Z. WOX5 is Shining in the Root Stem Cell Niche. Trends Plant Sci. 2015;20:601–603. doi: 10.1016/j.tplants.2015.08.009. PubMed DOI
Bagchi R., Melnyk C.W., Christ G., Winkler M., Kirchsteiner K., Salehin M., Mergner J., Niemeyer M., Schwechheimer C., Calderón Villalobos L.I.A., et al. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J. 2018;37:255–268. doi: 10.15252/embj.201797159. PubMed DOI PMC
Kamiya N., Nagasaki H., Morikami A., Sato Y., Matsuoka M. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J. 2003;35:429–441. doi: 10.1046/j.1365-313X.2003.01816.x. PubMed DOI
Inukai Y., Sakamoto T., Ueguchi-tanaka M., Shibata Y., Gomi K., Umemura I., Hasegawa Y., Ashikari M., Kitano H., Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an Auxin Response Factor in auxin signaling. Plant Cell. 2005;17:1387–1396. doi: 10.1105/tpc.105.030981. PubMed DOI PMC
Itoh J.I., Nonomura K.I., Ikeda K., Yamaki S., Inukai Y., Yamagishi H., Kitano H., Nagato Y. Rice plant development: From zygote to spikelet. Plant Cell Physiol. 2005;46:23–47. doi: 10.1093/pcp/pci501. PubMed DOI
Fukaki H., Wysocka-Diller J., Kato T., Fujisawa H., Benfey P.N., Tasaka M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 1998;14:425–430. doi: 10.1046/j.1365-313X.1998.00137.x. PubMed DOI
De Klerk G.-J., van der Krieken W., de Jong J.C. Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant. 1999;35:189–199. doi: 10.1007/s11627-999-0076-z. DOI
Li S.W., Xue L., Xu S., Feng H., An L. Mediators, genes and signaling in adventitious rooting. Bot. Rev. 2009;75:230–247. doi: 10.1007/s12229-009-9029-9. DOI
Xu L. De novo root regeneration from leaf explants: Wounding, auxin, and cell fate transition. Curr. Opin. Plant Biol. 2018;41:39–45. doi: 10.1016/j.pbi.2017.08.004. PubMed DOI
Greenwood M.S., Cui X., Xu F. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol. Plant. 2001;111:373–380. doi: 10.1034/j.1399-3054.2001.1110315.x. PubMed DOI
Naija S., Elloumi N., Jbir N., Ammar S., Kevers C. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured In Vitro. C. R. Biol. 2008;331:518–525. doi: 10.1016/j.crvi.2008.04.002. PubMed DOI
Agulló-Antón M.Á., Sánchez-Bravo J., Acosta M., Druege U. Auxins or Sugars: What Makes the Difference in the Adventitious Rooting of Stored Carnation Cuttings? J. Plant Growth Regul. 2011;30:100–113. doi: 10.1007/s00344-010-9174-8. DOI
Rigal A., Yordanov Y.S., Perrone I., Karlberg A., Tisserant E., Bellini C., Busov V.B., Martin F., Kohler A., Bhalerao R., et al. The Aintegumenta Like1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol. 2012;160:1996–2006. doi: 10.1104/pp.112.204453. PubMed DOI PMC
Ahkami A.H., Melzer M., Ghaffari M.R., Pollmann S., Ghorbani Javid M., Shahinnia F., Hajirezaei M.R., Druege U. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta. 2013;238:499–517. doi: 10.1007/s00425-013-1907-z. PubMed DOI PMC
Pacurar D.I., Perrone I., Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant. 2014;151:83–96. doi: 10.1111/ppl.12171. PubMed DOI
Kareem A., Radhakrishnan D., Sondhi Y., Aiyaz M., Roy M.V., Sugimoto K., Prasad K. De novo assembly of plant body plan: A step ahead of Deadpool. Regeneration. 2016;3:182–197. doi: 10.1002/reg2.68. PubMed DOI PMC
Nemoto K., Morita S., Baba T. Shoot and Root Development in Rice Related to the Phyllochron. Crop Sci. 1995;35:24–29. doi: 10.2135/cropsci1995.0011183X003500010005x. DOI
Eysholdt-Derzsó E., Sauter M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol. 2019;21(Suppl. 1):103–108. PubMed PMC
Tan X., Zwiazek J.J. Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS ONE. 2019;14:e0212059. doi: 10.1371/journal.pone.0212059. PubMed DOI PMC
Ayi Q., Zeng B., Liu J., Li S., van Bodegom P.M., Cornelissen J.H.C. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants. Ann. Bot. 2016;118:675–683. doi: 10.1093/aob/mcw051. PubMed DOI PMC
Pernot C., Thiffault N., DesRochers A. Contribution of adventitious vs. initial roots to growth and physiology of black spruce seedlings. Physiol. Plant. 2019;165:29–38. doi: 10.1111/ppl.12735. PubMed DOI
Gaudin A.C.M., Mcclymont S.A., Holmes B.M., Lyons E., Raizada M.N. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ. 2011;34:2122–2137. doi: 10.1111/j.1365-3040.2011.02409.x. PubMed DOI
Saengwilai P., Tian X., Lynch J.P. Low Crown Root Number Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize. Plant Physiol. 2014;166:581–589. doi: 10.1104/pp.113.232603. PubMed DOI PMC
Lynch J.P. Rightsizing root phenotypes for drought resistance. J. Exp. Bot. 2018;69:3279–3292. doi: 10.1093/jxb/ery048. PubMed DOI
Gutierrez L., Bussell J.D., Pacurar D.I., Schwambach J., Pacurar M., Bellini C. Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of Auxin Response Factor Transcripts and MicroRNA Abundance. Plant Cell. 2009;21:3119–3132. doi: 10.1105/tpc.108.064758. PubMed DOI PMC
Da Costa C.T., de Almeida M.R., Ruedell C.M., Schwambach J., Maraschin F.S., Fett-Neto A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013;4:133. doi: 10.3389/fpls.2013.00133. PubMed DOI PMC
Yu J., Niu L., Yu J., Liao W., Xie J., Lv J., Feng Z., Hu L., Dawuda M.M. The Involvement of Ethylene in Calcium-Induced Adventitious Root Formation in Cucumber under Salt Stress. Int. J. Mol. Sci. 2019;20:1047. doi: 10.3390/ijms20051047. PubMed DOI PMC
Pagnussat G.C., Simontacchi M., Puntarulo S., Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol. 2002;129:954–956. doi: 10.1104/pp.004036. PubMed DOI PMC
Pagnussat G.C., Lanteri M.L., Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 2003;132:1241–1248. doi: 10.1104/pp.103.022228. PubMed DOI PMC
Lanteri L., Lombardo C., Pagnussat G.C., Lamattina L. Nitric Oxide Mediates the Indole Acetic Acid Induction Activation of a Mitogen-Activated Protein Kinase Cascade Involved in Adventitious Root Development 1. Society. 2004;135:279–286. PubMed PMC
Lanteri M.L., Pagnussat G.C., Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J. Exp. Bot. 2006;57:1341–1351. doi: 10.1093/jxb/erj109. PubMed DOI
Lanteri M.L., Laxalt A.M., Lamattina L. Nitric Oxide Triggers Phosphatidic Acid Accumulation via Phospholipase D during Auxin-Induced Adventitious Root Formation in Cucumber. Plant Physiol. 2008;147:188–198. doi: 10.1104/pp.107.111815. PubMed DOI PMC
Yang W., Zhu C., Ma X., Li G., Gan L., Ng D., Xia K. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. PLoS ONE. 2013;8:1–14. doi: 10.1371/journal.pone.0084580. PubMed DOI PMC
Hilo A., Shahinnia F., Druege U., Franken P., Melzer M., Rutten T., von Wirén N., Hajirezaei M.-R. A specific role of iron in promoting meristematic cell division during adventitious root formation. J. Exp. Bot. 2017;68:4233–4247. doi: 10.1093/jxb/erx248. PubMed DOI PMC
Vidoz M.L., Loreti E., Mensuali A., Alpi A., Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010;63:551–562. doi: 10.1111/j.1365-313X.2010.04262.x. PubMed DOI
Mauriat M., Petterle A., Bellini C., Moritz T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J. 2014;78:372–384. doi: 10.1111/tpj.12478. PubMed DOI
Sauter M. Root responses to flooding. Curr. Opin. Plant Biol. 2013;16:282–286. doi: 10.1016/j.pbi.2013.03.013. PubMed DOI
Steffens B., Wang J., Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta. 2006;223:604–612. doi: 10.1007/s00425-005-0111-1. PubMed DOI
Dai X., Wang Y., Yang A., Zhang W.-H. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol. 2012;159:169–183. doi: 10.1104/pp.112.194217. PubMed DOI PMC
Steffens B., Rasmussen A. The Physiology of Adventitious Roots. Plant Physiol. 2016;170:603–617. doi: 10.1104/pp.15.01360. PubMed DOI PMC
Jeník J. Clonal growth in woody plants: A review. Folia Geobot. Phytotaxon. 1994;29:291–306. doi: 10.1007/BF02803802. DOI
Vacek S., Hejcman M. Natural layering, foliation, fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts., Czech Republic. Eur. J. For. Res. 2012;131:799–810. doi: 10.1007/s10342-011-0553-x. DOI
Dawood T., Rieu I., Wolters-Arts M., Derksen E.B., Mariani C., Visser E.J.W. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants. 2014;6:1–13. doi: 10.1093/aobpla/plt058. PubMed DOI PMC
Zhou J., Jiao F., Wu Z., Li Y., Wang X., He X., Zhong W., Wu P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 2008;146:1673–1686. doi: 10.1104/pp.107.111443. PubMed DOI PMC
Falasca G., Zaghi D., Possenti M., Altamura M.M. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 2004;23:17–25. doi: 10.1007/s00299-004-0801-3. PubMed DOI
Miller C.R., Ochoa I., Nielsen K.L., Beck D., Lynch J.P. Genetic variation for adventitious rooting in response to low phosphorus availability: Potential utility for phosphorus acquisition from stratified soils. Funct. Plant Biol. 2003;30:973–985. doi: 10.1071/FP03078. PubMed DOI
Walk T.C., Jaramillo R., Lynch J.P. Architectural Tradeoffs between Adventitious and Basal Roots for Phosphorus Acquisition. Plant Soil. 2006;279:347–366. doi: 10.1007/s11104-005-0389-6. DOI
Niu Y.F., Chai R.S., Jin G.L., Wang H., Tang C.X., Zhang Y.S. Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 2013;112:391–408. doi: 10.1093/aob/mcs285. PubMed DOI PMC
Boerjan W., Cervera M.T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995;7:1405–1419. PubMed PMC
Lin C., Sauter M. Polar Auxin Transport Determines Adventitious Root Emergence and Growth in Rice. Front. Plant Sci. 2019;10:444. doi: 10.3389/fpls.2019.00444. PubMed DOI PMC
Tanaka H., Dhonukshe P., Brewer P.B., Friml J. Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development. Cell. Mol. Life Sci. 2006;63:2738–2754. doi: 10.1007/s00018-006-6116-5. PubMed DOI PMC
Agulló-Antón M.Á., Ferrández-Ayela A., Fernández-García N., Nicolás C., Albacete A., Pérez-Alfocea F., Sánchez-Bravo J., Pérez-Pérez J.M., Acosta M. Early steps of adventitious rooting: Morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol. Plant. 2014;150:446–462. doi: 10.1111/ppl.12114. PubMed DOI
Klerk G.J.D., Keppel M., Brugge J.T., Meekes H. Timing of the phases in adventitous root formation in apple microcuttings. J. Exp. Bot. 1995;46:965–972. doi: 10.1093/jxb/46.8.965. DOI
Dello Ioio R., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. Cytokinins Determine Arabidopsis Root-Meristem Size by Controlling Cell Differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI
Kitomi Y., Hidemi K., Inukai Y. Molecular mechanism of crown root initiation and the different mechanisms between crown root and radicle in rice. Plant Signal. Behav. 2011;6:1276–1278. doi: 10.4161/psb.6.9.16787. PubMed DOI PMC
Gao S., Fang J., Xu F., Wang W., Sun X., Chu J., Cai B., Feng Y., Chu C. Cytokinin Oxidase/Dehydrogenase4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Plant Physiol. 2014;165:1035–1046. doi: 10.1104/pp.114.238584. PubMed DOI PMC
Rasmussen A., Hosseini S.A., Hajirezaei M.-R., Druege U., Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J. Exp. Bot. 2015;66:1437–1452. doi: 10.1093/jxb/eru499. PubMed DOI PMC
Negi S., Sukumar P., Liu X., Cohen J.D., Muday G.K. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J. 2010;61:3–15. doi: 10.1111/j.1365-313X.2009.04027.x. PubMed DOI
Lewis D.R., Negi S., Sukumar P., Muday G.K. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development. 2011;138:3485–3495. doi: 10.1242/dev.065102. PubMed DOI
Veloccia A., Fattorini L., Della Rovere F., Sofo A., D’Angeli S., Betti C., Falasca G., Altamura M.M. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana. J. Exp. Bot. 2016;67:6445–6458. doi: 10.1093/jxb/erw415. PubMed DOI PMC
Rasmussen A., Hu Y., Depaepe T., Vandenbussche F., Boyer F.-D., Van Der Straeten D., Geelen D. Ethylene Controls Adventitious Root Initiation Sites in Arabidopsis Hypocotyls Independently of Strigolactones. J. Plant Growth Regul. 2017;36:897–911. doi: 10.1007/s00344-017-9692-8. DOI
Lin C., Sauter M. Control of Adventitious Root Architecture in Rice by Darkness, Light, and Gravity. Plant Physiol. 2018;176:1352–1364. doi: 10.1104/pp.17.01540. PubMed DOI PMC
Jackson M.B. Waterlogging and Submergence. Annu. Rev. Phytopathol. 1985;36:145–174.
Eysholdt-Derzsó E., Sauter M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. Plant Physiol. 2017;175:412–423. doi: 10.1104/pp.17.00555. PubMed DOI PMC
Shukla V., Lombardi L., Iacopino S., Pencik A., Novak O., Perata P., Giuntoli B., Licausi F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Mol. Plant. 2019;12:538–551. doi: 10.1016/j.molp.2019.01.007. PubMed DOI
De Klerk G.J., Hanecakova J. Ethylene and rooting of mung bean cuttings. The role of auxin induced ethylene synthesis and phase-dependent effects. Plant Growth Regul. 2008;56:203–209. doi: 10.1007/s10725-008-9301-8. DOI
Lombardi-Crestana S., da Silva Azevedo M., de Silva G.F.F., Pino L.E., Appezzato-da-Glória B., Figueira A., Nogueira F.T.S., Peres L.E.P. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots. J. Exp. Bot. 2012;63:5689–5703. doi: 10.1093/jxb/ers221. PubMed DOI PMC
Moriconi J.I., Kotula L., Santa-María G.E., Colmer T.D. Root phenotypes of dwarf and “overgrowth” SLN1 barley mutants, and implications for hypoxic stress tolerance. J. Plant Physiol. 2019;234–235:60–70. doi: 10.1016/j.jplph.2019.01.009. PubMed DOI
Chen Q., Westfall C.S., Hicks L.M., Wang S., Jez J.M. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J. Biol. Chem. 2010;285:29780–29786. doi: 10.1074/jbc.M110.146431. PubMed DOI PMC
Westfall C.S., Herrmann J., Chen Q., Wang S., Jez J.M. Modulating plant hormones by enzyme action. Plant Signal. Behav. 2010;5:1607–1612. doi: 10.4161/psb.5.12.13941. PubMed DOI PMC
Wang S., Bai Y., Shen C., Wu Y., Zhang S., Jiang D., Guilfoyle T.J., Chen M., Qi Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genom. 2010;10:533–546. doi: 10.1007/s10142-010-0174-3. PubMed DOI
Gutierrez L., Mongelard G., Floková K., Păcurar D.I., Novák O., Staswick P., Kowalczyk M., Păcurar M., Demailly H., Geiss G., et al. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis. Plant Cell. 2012;24:2515–2527. doi: 10.1105/tpc.112.099119. PubMed DOI PMC
Fattorini L., Della Rovere F., Andreini E., Ronzan M., Falasca G., Altamura M.M. Indole-3-butyric acid induces ectopic formation of metaxylem in the hypocotyl of arabidopsis thaliana without conversion into indole-3-acetic acid and with a positive interaction with ethylene. Int. J. Mol. Sci. 2017;18:2474. doi: 10.3390/ijms18112474. PubMed DOI PMC
Terrile M.C., París R., Calderõn-Villalobos L.I.A., Iglesias M.J., Lamattina L., Estelle M., Casalongué C.A. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis Transport Inhibitor Response 1 auxin receptor. Plant J. 2012;70:492–500. doi: 10.1111/j.1365-313X.2011.04885.x. PubMed DOI PMC
Xiong J., Tao L., Zhu C. Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots? Plant Signal. Behav. 2009;4:999–1001. doi: 10.4161/psb.4.10.9715. PubMed DOI PMC
Guan L., Murphy A.S., Peer W.A., Gan L., Li Y., Cheng Z.-M. (Max) Physiological and Molecular Regulation of Adventitious Root Formation. CRC Crit. Rev. Plant Sci. 2015;34:506–521. doi: 10.1080/07352689.2015.1090831. DOI
Niu L., Yu J., Liao W., Yu J., Zhang M., Dawuda M.M. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress. Front. Plant Sci. 2017;8:1–14. doi: 10.3389/fpls.2017.01684. PubMed DOI PMC
Li S.-W., Li Y., Leng Y., Zeng X.-Y., Ma Y.-H. Nitric oxide donor improves adventitious rooting in mung bean hypocotyl cuttings exposed to cadmium and osmotic stresses. Environ. Exp. Bot. 2019;164:114–123. doi: 10.1016/j.envexpbot.2019.05.004. DOI
Li S.-W., Leng Y., Shi R.-F. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genom. 2017;18:188. doi: 10.1186/s12864-017-3576-y. PubMed DOI PMC
Syros T., Yupsanis T., Zafiriadis H., Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 2004;161:69–77. doi: 10.1078/0176-1617-00938. PubMed DOI
Liu H., Wang S., Yu X., Yu J., He X., Zhang S., Shou H., Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 2005;43:47–56. doi: 10.1111/j.1365-313X.2005.02434.x. PubMed DOI
Taramino G., Sauer M., Stauffer J.L., Multani D., Niu X., Sakai H., Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J. 2007;50:649–659. doi: 10.1111/j.1365-313X.2007.03075.x. PubMed DOI
Orman-Ligeza B., Parizot B., Gantet P.P., Beeckman T., Bennett M.J., Draye X. Post-embryonic root organogenesis in cereals: Branching out from model plants. Trends Plant Sci. 2013;18:459–467. doi: 10.1016/j.tplants.2013.04.010. PubMed DOI
Zhang T., Li R., Xing J., Yan L., Wang R., Zhao Y. The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Front. Plant Sci. 2018;9:1–10. doi: 10.3389/fpls.2018.00523. PubMed DOI PMC
Mai C.D., Phung N.T., To H.T., Gonin M., Hoang G.T., Nguyen K.L., Do V.N., Courtois B., Gantet P. Genes controlling root development in rice. Rice. 2014;7:30. doi: 10.1186/s12284-014-0030-5. PubMed DOI PMC
Kitomi Y., Ogawa A., Kitano H., Inukai Y. CRL4 regulates crown root formation through auxin transport in rice. Plant Root. 2008;2:19–28. doi: 10.3117/plantroot.2.19. DOI
Liu S., Wang J., Wang L., Wang X., Xue Y., Wu P., Shou H. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res. 2009;19:1110–1119. doi: 10.1038/cr.2009.70. PubMed DOI
Okushima Y., Fukaki H., Onoda M., Theologis A., Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 2007;19:118–130. doi: 10.1105/tpc.106.047761. PubMed DOI PMC
Coudert Y., Dievart A., Droc G., Gantet P. ASL/LBD Phylogeny Suggests that Genetic Mechanisms of Root Initiation Downstream of Auxin Are Distinct in Lycophytes and Euphyllophytes. Mol. Biol. Evol. 2013;30:569–572. doi: 10.1093/molbev/mss250. PubMed DOI
Wang Y., Wang D., Gan T., Liu L., Long W., Wang Y., Niu M., Li X., Zheng M., Jiang L., et al. CRL6, a member of the CHD protein family, is required for crown root development in rice. Plant Physiol. Biochem. 2016;105:185–194. doi: 10.1016/j.plaphy.2016.04.022. PubMed DOI
Coudert Y., Le V.A.T., Adam H., Bès M., Vignols F., Jouannic S., Guiderdoni E., Gantet P. Identification of Crown Rootless1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation. N. Phytol. 2015;206:243–254. doi: 10.1111/nph.13196. PubMed DOI
Kitomi Y., Ito H., Hobo T., Aya K., Kitano H., Inukai Y. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J. 2011;67:472–484. doi: 10.1111/j.1365-313X.2011.04610.x. PubMed DOI
Zhao Y., Hu Y., Dai M., Huang L., Zhou D.-X. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell. 2009;21:736–748. doi: 10.1105/tpc.108.061655. PubMed DOI PMC
Zhao Y., Cheng S., Song Y., Huang Y., Zhou S., Liu X., Zhou D.-X. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling. Plant Cell. 2015;27:2469–2483. doi: 10.1105/tpc.15.00227. PubMed DOI PMC
Lohmann J.U., Hong R.L., Hobe M., Busch M.A., Parcy F., Simon R., Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell. 2001;105:793–803. doi: 10.1016/S0092-8674(01)00384-1. PubMed DOI
Jiang W., Zhou S., Zhang Q., Song H., Zhou D.X., Zhao Y. Transcriptional regulatory network of WOX11 is involved in the control of crown root development, cytokinin signals, and redox in rice. J. Exp. Bot. 2017;68:2787–2798. doi: 10.1093/jxb/erx153. PubMed DOI PMC
Liu W., Yu J., Ge Y., Qin P., Xu L. Pivotal role of LBD16 in root and root-like organ initiation. Cell. Mol. Life Sci. 2018;75:3329–3338. doi: 10.1007/s00018-018-2861-5. PubMed DOI PMC
Yuan J., Chen D., Ren Y., Zhang X., Zhao J. Characteristic and Expression Analysis of a Metallothionein Gene, OsMT2b, Down-Regulated by Cytokinin Suggests Functions in Root Development and Seed Embryo Germination of Rice. Plant Physiol. 2008;146:1637–1650. doi: 10.1104/pp.107.110304. PubMed DOI PMC
Shang X.L., Xie R.R., Tian H., Wang Q.L., Guo F.Q. Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J. Integr. Plant Biol. 2016;58:627–641. doi: 10.1111/jipb.12444. PubMed DOI
Negishi N., Oishi M., Kawaoka A. Chemical screening for promotion of adventitious root formation in Eucalyptus globulus. BMC Proc. 2011;5:139. doi: 10.1186/1753-6561-5-S7-P139. DOI
Stevens M.E., Woeste K.E., Pijut P.M. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.) Tree Physiol. 2018;38:877–894. doi: 10.1093/treephys/tpx175. PubMed DOI
Sassi M., Lu Y., Zhang Y., Wang J., Dhonukshe P., Blilou I., Dai M., Li J., Gong X., Jaillais Y., et al. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in Arabidopsis. Development. 2012;139:3402–3412. doi: 10.1242/dev.078212. PubMed DOI
Pacurar D.I., Pacurar M.L., Lakehal A., Pacurar A.M., Ranjan A., Bellini C. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation. Sci. Rep. 2017;7:628. doi: 10.1038/s41598-017-00744-1. PubMed DOI PMC
Stepanova A.N., Hoyt M.J., Hamilton A.A., Alonso J.M. A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis. Plant Cell. 2005;17:2230–2242. doi: 10.1105/tpc.105.033365. PubMed DOI PMC
Fett-Neto A.G., Fett J.P., Goulart L.W.V., Pasquali G., Termignoni R.R., Ferreira A.G. Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol. 2001;21:457–464. doi: 10.1093/treephys/21.7.457. PubMed DOI
Ibáñez S., Ruiz-Cano H., Fernández M.Á., Sánchez-García A.B., Villanova J., Micol J.L., Pérez-Pérez J.M. A Network-Guided Genetic Approach to Identify Novel Regulators of Adventitious Root Formation in Arabidopsis thaliana. Front. Plant Sci. 2019;10:461. doi: 10.3389/fpls.2019.00461. PubMed DOI PMC
Li X., Guo Z., Lv Y., Cen X., Ding X., Wu H., Li X. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet. 2017;13:e1006889. doi: 10.1371/journal.pgen.1006889. PubMed DOI PMC
Hutchison K.W., Singer P.B., McInnis S., Diaz-Sala C., Greenwood M.S. Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol. 1999;120:827–832. doi: 10.1104/pp.120.3.827. PubMed DOI PMC
Xu M., Xie W., Huang M. Two Wuschel-related Homeobox genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. Physiol. Plant. 2015;155:446–456. doi: 10.1111/ppl.12349. PubMed DOI
Wang X.-F., He F.-F., Ma X.-X., Mao C.-Z., Hodgman C., Lu C.-G., Wu P. OsCAND1 is required for crown root emergence in rice. Mol. Plant. 2011;4:289–299. doi: 10.1093/mp/ssq068. PubMed DOI
Vernoux T., Wilson R.C., Seeley K.A., Reichheld J.P., Muroy S., Brown S., Maughan S.C., Cobbett C.S., Van Montagu M., Inzé D., et al. The Root Meristemless1/Cadmium Sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell. 2000;12:97–110. doi: 10.1105/tpc.12.1.97. PubMed DOI PMC
Kornet N., Scheres B. Members of the GCN5 histone acetyltransferase complex regulate Plethora-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell. 2009;21:1070–1079. doi: 10.1105/tpc.108.065300. PubMed DOI PMC
Zhou S., Jiang W., Long F., Cheng S., Yang W., Zhao Y., Zhou D.-X. Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem. Plant Cell. 2017;29:1088–1104. doi: 10.1105/tpc.16.00908. PubMed DOI PMC
Jin J., Chen H., Cai W. Transcriptome Analysis of Oryza sativa Calli Under Microgravity. Microgravity Sci. Technol. 2015;27:437–453. doi: 10.1007/s12217-015-9432-2. DOI
Won S.K., Choi S.B., Kumari S., Cho M., Lee S.H., Cho H.T. Root hair-specific expansin B genes have been selected for graminaceae root hairs. Mol. Cells. 2010;30:369–376. doi: 10.1007/s10059-010-0127-7. PubMed DOI
Yu Z., Kang B., He X., Lv S., Bai Y., Ding W., Chen M., Cho H.T., Wu P. Root hair-specific expansins modulate root hair elongation in rice. Plant J. 2011;66:725–734. PubMed
Ma N., Wang Y., Qiu S., Kang Z., Che S., Wang G., Huang J. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS ONE. 2013;8:e75997. doi: 10.1371/journal.pone.0075997. PubMed DOI PMC
Debi B.R., Taketa S., Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa) J. Plant Physiol. 2005;162:507–515. doi: 10.1016/j.jplph.2004.08.007. PubMed DOI
Laplaze L., Benkova E., Casimiro I., Maes L., Vanneste S., Swarup R., Weijers D., Calvo V., Parizot B., Herrera-Rodriguez M.B., et al. Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell. 2007;19:3889–3900. doi: 10.1105/tpc.107.055863. PubMed DOI PMC
Ramirez-Carvajal G.A., Morse A.M., Dervinis C., Davis J.M. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol. 2009;150:759–771. doi: 10.1104/pp.109.137505. PubMed DOI PMC
Kuroha T., Satoh S. Involvement of cytokinins in adventitious and lateral root formation. Plant Root. 2007;1:27–33. doi: 10.3117/plantroot.1.27. DOI
Meng W., Cheng Z.J., Sang Y.L., Zhang M.M., Rong X.F., Wang Z.W., Tang Y.Y., Zhang X.S. Type-B Arabidopsis Response Regulators is Critical to the Specification of Shoot Stem Cell Niche by Dual Regulation of Wuschel. Plant Cell. 2017;29:00640. doi: 10.1105/tpc.16.00640. PubMed DOI PMC
Da Rocha Correˆa L., Paim D.C., Schwambach J., Fett-Neto A.G. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul. 2005;45:63–73. doi: 10.1007/s10725-004-6125-z. DOI
Thompson A.J., Thorne E.T., Burbidge A., Jackson A.C., Sharp R.E., Taylor I.B. Complementation of notabilis, an abscisic acid-deficient mutant of tomato: Importance of sequence context and utility of partial complementation. Plant Cell Environ. 2004;27:459–471. doi: 10.1111/j.1365-3040.2003.01164.x. DOI
Busov V., Meilan R., Pearce D.W., Rood S.B., Ma C., Tschaplinski T.J., Strauss S.H. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta. 2006;224:288–299. doi: 10.1007/s00425-005-0213-9. PubMed DOI
Lo S.-F., Yang S.-Y., Chen K.-T., Hsing Y.-I., Zeevaart J.A.D., Chen L.-J., Yu S.-M. A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. Plant Cell. 2008;20:2603–2618. doi: 10.1105/tpc.108.060913. PubMed DOI PMC
Chou Guan J., Koch K.E., Suzuki M., Wu S., Latshaw S., Petruff T., Goulet C., Klee H.J., McCarty D.R. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol. 2012;160:1303–1317. doi: 10.1104/pp.112.204503. PubMed DOI PMC
Rasmussen A., Beveridge C.A., Geelen D. Inhibition of strigolactones promotes adventitious root formation. Plant Signal. Behav. 2012;7:694–697. doi: 10.4161/psb.20224. PubMed DOI PMC
Sun H., Tao J., Hou M., Huang S., Chen S., Liang Z., Xie T., Wei Y., Xie X., Yoneyama K., et al. A strigolactone signal is required for adventitious root formation in rice. Ann. Bot. 2015;115:1155–1162. doi: 10.1093/aob/mcv052. PubMed DOI PMC
Uga Y., Sugimoto K., Ogawa S., Rane J., Ishitani M., Hara N., Kitomi Y., Inukai Y., Ono K., Kanno N., et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013;45:1097–1102. doi: 10.1038/ng.2725. PubMed DOI
Baurens F.-C., Nicolleau J., Legavre T., Verdeil J.-L., Monteuuis O. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 2004;24:401–407. doi: 10.1093/treephys/24.4.401. PubMed DOI
Monteuuis O., Doulbeau S., Verdeil J.L. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees-Struct. Funct. 2008;22:779–784. doi: 10.1007/s00468-008-0238-3. DOI
Nilsson O., Olsson O. Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol. Plant. 1997;100:463–473. doi: 10.1111/j.1399-3054.1997.tb03050.x. DOI
Sedira M., Holefors A., Welander M. Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep. 2001;20:517–524. doi: 10.1007/s002990100357. PubMed DOI
Zhu L.H., Li X.Y., Ahlman A., Welander M. The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci. 2003;165:829–835. doi: 10.1016/S0168-9452(03)00279-6. DOI
Lynch J.P., Brown K.M. New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012;367:1598–1604. doi: 10.1098/rstb.2011.0243. PubMed DOI PMC
Hodge A., Berta G., Doussan C., Merchan F., Crespi M. Plant root growth, architecture and function. Plant Soil. 2009;321:153–187. doi: 10.1007/s11104-009-9929-9. DOI
Jahnke S., Menzel M.I., Van Dusschoten D., Roeb G.W., Bühler J., Minwuyelet S., Blümler P., Temperton V.M., Hombach T., Streun M., et al. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J. 2009;59:634–644. doi: 10.1111/j.1365-313X.2009.03888.x. PubMed DOI
Tracy S.R., Roberts J.A., Black C.R., McNeill A., Davidson R., Mooney S.J. The X-factor: Visualizing undisturbed root architecture in soils using X-ray computed tomography. J. Exp. Bot. 2010;61:311–313. doi: 10.1093/jxb/erp386. PubMed DOI
Oh S.-J., Kim Y.S., Kwon C.-W., Park H.K., Jeong J.S., Kim J.-K. Overexpression of the Transcription Factor AP37 in Rice Improves Grain Yield under Drought Conditions. Plant Physiol. 2009;150:1368–1379. doi: 10.1104/pp.109.137554. PubMed DOI PMC
Kenrick P. Plant Roots. CRC Press; Boca Raton, FL, USA: 2013. The Origin of Roots; pp. 1–13.
Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.)