Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions

. 2022 Nov 11 ; 11 (22) : . [epub] 20221111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36432788

Grantová podpora
MZE-RO1118 Ministry of Agriculture
51834/2017-MZE-17253 Ministry of Agriculture

Plant research and breeding depends on plant genotypes; therefore, genotype authenticity of accessions is the basic requirement for users of gene banks. Surprisingly, this extremely important topic is rarely reported in the scientific community. Non-authentic are accessions that are mislabelled and undesirable genotypes of heterogeneous accessions. In barley, we try to uncover both named problems on the basis of postulated major powdery mildew resistance genes. These are diverse, environmentally stable and their use is well documented and suitable for genotype characterization. In this contribution, we postulate resistance genes in 15 varieties represented by 157 derived lines of 32 accessions originating from seven foreign gene banks and compare these findings with previous results including those 15 identically labelled varieties from our domestic gene bank. We found that 37.5% of the gene bank accessions investigated herein were heterogeneous, and at least 20.0% were mislabelled. A large-scale molecular characterisation of varieties is now being carried out, and using authentic varieties must be one of the key requirements. Therefore, accessions of each variety from a minimum of three gene banks whose identity has been verified by reliable methods should be compared before starting new experiments. These will involve molecular varietal characterisation to serve as a foundation for future plant science research and effective crop improvement.

Zobrazit více v PubMed

Yabe S., Iwata H., Jannink J.L. Impact of mislabeling on genomic selection in cassava breeding. Crop Sci. 2018;58:1470–1480. doi: 10.2135/cropsci2017.07.0442. PubMed DOI PMC

Dreiseitl A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007;126:268–273. doi: 10.1111/j.1439-0523.2007.01348.x. DOI

Dreiseitl A., Zavřelová M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE. 2018;13:e0208719. doi: 10.1371/journal.pone.0208719. PubMed DOI PMC

Dreiseitl A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017;8:202. doi: 10.3389/fpls.2017.00202. PubMed DOI PMC

Dreiseitl A. Genotype heterogeneity in accessions of a winter barley core collection assessed on postulated specific powdery mildew resistance genes. Agronomy. 2021;11:513. doi: 10.3390/agronomy11030513. PubMed DOI PMC

Dreiseitl A., Nesvadba Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants. 2021;10:1998. doi: 10.3390/plants10101988. PubMed DOI PMC

Dreiseitl A. Powdery mildew resistance phenotypes of wheat gene bank accessions. Biology. 2021;10:846. doi: 10.3390/biology10090846. PubMed DOI PMC

af Satra J.S., Troggio M., Odilbekov F., Sehic J., Mattisson H., Hjalmarsson I., Ingvarsson P.K., Garkava-Gustavsson L. Genetic status of the Swedish central collection of heirloom apple cultivars. Scientia Hortic. 2020;272:109599. doi: 10.1016/j.scienta.2020.109599. DOI

Shan F., Clarke H.C., Plummer J.A., Yan G., Siddique K.H.M. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor. Appl. Genet. 2005;110:381–391. doi: 10.1007/s00122-004-1849-8. PubMed DOI

Jreisat C.S., Laten H.M. Ribosomal RNA internal transcribed regions identify possible misidentification or mislabeling among Trifolium (Clover) specimens from germplasm collections. Crop Sci. 2017;57:322–326. doi: 10.2135/cropsci2016.07.0626. DOI

Zhang W., Sun Y.Z., Liu J., Xu C., Zou X.H., Chen X., Liu Y.L., Wu P., Yang X.Y., Zhou S.L. DNA barcoding of Oryza: Conventional, specific, and super barcodes. Plant Molec. Biol. 2021;105:215–228. doi: 10.1007/s11103-020-01054-3. PubMed DOI PMC

Girma G., Korie S., Dumet D., Franco J. Improvement of accession distinctiveness as an added value to the global worth of the yam (Dioscorea ssp.) genebank. Int. J. Conservation Sci. 2012;3:199–206.

van de Wouw M., van Treuren R., van Hintum T. Authenticity of old cultivars in genebank collections: A case study on Lettuce. Crop Sci. 2011;51:736–746. doi: 10.2135/cropsci2010.09.0511. DOI

Hempel P., Hohe A., Trankner C. Molecular Reconstruction of an Old Pedigree of Diploid and Triploid Hydrangea macrophylla Genotypes. Front. Plant Sci. 2018;9:429. doi: 10.3389/fpls.2018.00429. PubMed DOI PMC

Dreiseitl A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC

Brown J.K.M., Jørgensen J.H. A catalogue of mildew resistance genes in European barley varieties. In: Jørgensen J.H., editor. Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990. Risø National Laboratory; Roskilde, Denmark: 1991. pp. 263–286.

Dreiseitl A., Jørgensen J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000;119:203–209. doi: 10.1046/j.1439-0523.2000.00473.x. DOI

Dreiseitl A. Powdery mildew resistance genes in European barley cultivars registered in the Czech Republic from 2016 to 2020. Genes. 2022;13:1274. doi: 10.3390/genes13071274. PubMed DOI PMC

Volk G.M., Byrne P.F., Coyne C.J., Flint-Garcia S., Reeves P.A., Richards C. Integrating genomic and phenomic approaches to support plant genetic resources conservation and use. Plants. 2021;10:2260. doi: 10.3390/plants10112260. PubMed DOI PMC

Jørgensen J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63:141–152. doi: 10.1007/BF00023919. DOI

Xu Y.H., Jia Q.J., Zhou G.F., Zhang X.Q., Angessa T., Broughton S., Yan G., Zhang W.Y., Li C.D. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol. 2017;17:11. doi: 10.1186/s12870-016-0964-4. PubMed DOI PMC

Jørgensen J.H., Jensen H.P. Powdery mildew resistance gene Ml-a8 (Reg1h8) in northwest European spring barley varieties. Barley Genet. Newsl. 1983;13:51–52.

Jørgensen J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI

Hiura U., Heta H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of Erysiphe graminis hordei in Japan. Ber. Ohara Inst. Landwirtsch. Biol. 1955;10:135–156.

Wiberg A. Sources of resistance to powdery mildew in barley. Hereditas. 1974;78:1–40. doi: 10.1111/j.1601-5223.1974.tb01426.x. PubMed DOI

Diez M.J., De la Rosa L., Martin I., Guasch L., Cartea M.E., Mallor C., Casals J., Simó J., Rivera A., Anastasio G., et al. Plant genebanks: Present situation and proposals for their improvement. The case of the Spanish network. Front. Plant Sci. 2018;9:1794. doi: 10.3389/fpls.2018.01794. PubMed DOI PMC

Czembor J.H. Resistance to powdery mildew in populations of barley landraces from Morocco. Australas. Plant Pathol. 2000;29:137–148. doi: 10.1071/AP00022. DOI

van Hintum T.J.L., Visser D.L. Duplication within and between germplasm collections. II Duplication in four European barley collections. Genet. Resourc. Crop Evol. 1995;42:135–145. doi: 10.1007/BF02539517. DOI

Jayakodi M., Padmarasu S., Haberer G., Bonthala V.S., Gundlach H., Monat C., Lux T., Kamal N., Lang D., Himmelbach A., et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 2020;588:7837. doi: 10.1038/s41586-020-2947-8. PubMed DOI PMC

Jiang Y., Weise S., Graner A., Reif J.C. Using genome-wide predictions to assess the phenotypic variation of a barley (Hordeum sp.) gene bank collection for important agronomic traits and passport information. Frontiers Plant Sci. 2021;11:604781. doi: 10.3389/fpls.2020.604781. PubMed DOI PMC

Dreiseitl A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019;138:840–845. doi: 10.1111/pbr.12730. DOI

Kølster P., Munk L., Stølen O., Løhde J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986;26:903–907. doi: 10.2135/cropsci1986.0011183X002600050014x. DOI

Torp J., Jensen H.P., Jørgensen J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Royal Veterinary and Agricultural University; Copenhagen, Denmark: 1978. pp. 75–102. Year-book, 1978.

Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI

Kosman E., Chen X., Dreiseitl A., McCallum B., Lebeda A., Ben-Yehuda P., Gultyaeva E., Manisterski J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology. 2019;109:1324–1330. doi: 10.1094/PHYTO-02-19-0041-LE. PubMed DOI

Dreiseitl A. Postulation of specific powdery mildew resistance genes in cereals: A widely used method and its detailed description. Pathogens. 2022;11:284. doi: 10.3390/pathogens11030284. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace