Seminal Bacterioflora of Two Rooster Lines: Characterization, Antibiotic Resistance Patterns and Possible Impact on Semen Quality
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-15-0544
Slovak Research and Development Agency
APVV-21-0095
Slovak Research and Development Agency
VEGA 1/0239/20
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
Drive4SIFood 313011V336
Operational program Integrated Infrastructure
PubMed
36830247
PubMed Central
PMC9952488
DOI
10.3390/antibiotics12020336
PII: antibiotics12020336
Knihovny.cz E-zdroje
- Klíčová slova
- Lohmann Brown, ROSS 308, antibiotic resistance, bacteriospermia, roosters, semen,
- Publikační typ
- časopisecké články MeSH
This study aimed to characterize the bacterial profiles and their association with selected semen quality traits among two chicken breeds. Thirty Lohmann Brown and thirty ROSS 308 roosters were selected for semen quality estimation, including sperm motility, membrane and acrosome integrity, mitochondrial activity, and DNA fragmentation. The oxidative profile of the semen, including the production of reactive oxygen species (ROS), antioxidant capacity, protein, and lipid oxidation, were assessed as well. Moreover, the levels of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-1, IL-6) and C-reactive protein, as well as the concentrations of selected antibacterial proteins (cathelicidin, β-defensin and lysozyme) in the seminal plasma were evaluated with the enzyme-linked immunosorbent assay. The prevailing bacterial genera identified by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were Citrobacter spp., Enterococcus spp., Escherichia spp. and Staphylococcus spp. While the bacterial load was significantly higher in the ROSS 308 line (p < 0.05), a higher number of potentially uropathogenic bacteria was found in the Lohmann Brown roosters. Antimicrobial susceptibility tests revealed a substantial resistance of randomly selected bacterial strains, particularly to ampicillin, tetracycline, chloramphenicol, and tobramycin. Furthermore, Lohmann Brown ejaculates containing an increased proportion of Escherichia coli presented with significantly (p < 0.05) elevated levels of TNF-α and IL-6, as well as ROS overproduction and lipid peroxidation. Inversely, significantly (p < 0.05) higher levels of β-defensin and lysozyme were found in the semen collected from the ROSS 308 roosters, which was characterized by a higher quality in comparison to the Lohmann Brown roosters. In conclusion, we emphasize the criticality of bacteriospermia in the poultry industry and highlight the need to include a more complex microbiological screening of semen samples designated for artificial insemination.
Zobrazit více v PubMed
Ebsa Y.A., Harpal S., Negia G.G. Challenges and chicken production status of poultry producers in Bishoftu, Ethiopia. Poult. Sci. 2019;98:5452–5455. doi: 10.3382/ps/pez343. PubMed DOI PMC
Attia Y.A., Rahman M.T., Hossain M.J., Basiouni S., Khafaga A.F., Shehata A.A., Hafez H.M. Poultry Production and Sustainability in Developing Countries under the COVID-19 Crisis: Lessons Learned. Animals. 2022;12:644. doi: 10.3390/ani12050644. PubMed DOI PMC
Roiter L.M., Vedenkina I.V.A., Eremeeva N. Analysis of the market potential of poultry meat and its forecast. IOP Conf. Series Earth Environ. Sci. 2021;937:022104. doi: 10.1088/1755-1315/937/2/022104. DOI
Oliveira A.G., Oliveira C.A. Epididymal lithiasis in roosters: In the middle of the way there was a stone. Life Sci. 2011;89:588–594. doi: 10.1016/j.lfs.2011.04.021. PubMed DOI
Wang H., Xu A., Gong L., Chen Z., Zhang B., Li X. The Microbiome, an Important Factor That Is Easily Overlooked in Male Infertility. Front. Microbiol. 2022;13:831272. doi: 10.3389/fmicb.2022.831272. PubMed DOI PMC
Ďuračka M., Belić L., Tokárová K., Žiarovská J., Kačániová M., Lukáč N., Tvrdá E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst. Biol. Reprod. Med. 2021;67:438–449. doi: 10.1080/19396368.2021.1958028. PubMed DOI
Tvrdá E., Kačániová M., Baláži A., Vašíček J., Vozaf J., Jurčík R., Ďuračka M., Žiarovská J., Kováč J., Chrenek P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals. 2022;12:54. doi: 10.3390/ani12010054. PubMed DOI PMC
Lenický M., Slanina T., Kačániová M., Galovičová L., Petrovičová M., Ďuračka M., Benko F., Kováč J., Tvrdá E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals. 2021;11:1771. doi: 10.3390/ani11061771. PubMed DOI PMC
Medo J., Žiarovská J., Ďuračka M., Tvrdá E., Baňas Š., Gábor M., Kyseľ M., Kačániová M. Core Microbiome of Slovak Holstein Friesian Breeding Bulls’ Semen. Animals. 2021;11:3331. doi: 10.3390/ani11113331. PubMed DOI PMC
Masarikova M., Mrackova M., Sedlinska M. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Identification of Stallion Semen Bacterial Contamination. J. Equine Vet. Sci. 2014;34:833–836. doi: 10.1016/j.jevs.2014.01.013. DOI
Omprakash A., Venkatesh G. Effect of vaginal douching and different semen extenders on bacterial load and fertility in turkeys. Br. Poult. Sci. 2006;47:523–526. doi: 10.1080/00071660600829209. PubMed DOI
Duracka M., Lukac N., Kacaniova M., Kantor A., Hleba L., Ondruska L., Tvrda E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules. 2019;24:4329. doi: 10.3390/molecules24234329. PubMed DOI PMC
Tvrdá E., Bučko O., Rojková K., Ďuračka M., Kunová S., Kováč J., Benko F., Kačániová M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals. 2021;11:3320. doi: 10.3390/ani11113320. PubMed DOI PMC
Gallo M.F., Warner L., King C.C., Sobel J.D., Klein R.S., Cu-Uvin S., Rompalo A.M., Jamieson D.J. Association between Semen Exposure and Incident Bacterial Vaginosis. Infect. Dis. Obstet. Gynecol. 2011;2011:842652. doi: 10.1155/2011/842652. PubMed DOI PMC
Gast R.K., Regmi P., Guraya R., Jones D.R., Anderson K.E., Karcher D.M. Contamination of eggs by Salmonella Enteritidis in experimentally infected laying hens of four commercial genetic lines in conventional cages and enriched colony housing. Poult. Sci. 2019;98:5023–5027. doi: 10.3382/ps/pez222. PubMed DOI
Moyle T., Drake K., Gole V., Chousalkar K., Hazel S. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment. Comp. Immunol. Microbiol. Infect. Dis. 2016;49:88–94. doi: 10.1016/j.cimid.2016.10.005. PubMed DOI
Al-Bahry S.N., Mahmoud I.Y., Al Musharafi S.K., Paulson J.R. Consumption of Contaminated Eggs: A Public Health Con-cern. Med. Res. Arch. 2015;2:22–28. doi: 10.18103/mra.v2i4.366. DOI
Berkhoff J., Alvarado-Gilis C., Keim J.P., Alcalde J.A., Vargas-Bello-Pérez E., Gandarillas M. Consumer preferences and sensory characteristics of eggs from family farms. Poult. Sci. 2020;99:6239–6246. doi: 10.1016/j.psj.2020.06.064. PubMed DOI PMC
Li S., He Y., Mann D.A., Deng X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat. Commun. 2021;12:5109. doi: 10.1038/s41467-021-25319-7. PubMed DOI PMC
Hafez H.M., Attia Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020;7:516. doi: 10.3389/fvets.2020.00516. PubMed DOI PMC
Akpan U.E., Ofongo-Abule R.T.S. Preliminary results on sources of bacteria of economic importance from three broiler chicken farms in Uyo metropolis of Akwa Ibom State. Niger. J. Anim. Sci. 2019;21:99–105.
Christensen H., Bachmeier J., Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC) Avian Pathol. 2021;50:370–381. doi: 10.1080/03079457.2020.1845300. PubMed DOI
Kahn L.H., Bergeron G., Bourassa M.W., De Vegt B., Gill J., Gomes F., Malouin F., Opengart K., Ritter G.D., Singer R.S., et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019;1441:31–39. doi: 10.1111/nyas.14034. PubMed DOI PMC
Hedman H.D., Vasco K.A., Zhang L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals. 2020;10:1264. doi: 10.3390/ani10081264. PubMed DOI PMC
Roth N., Käsbohrer A., Mayrhofer S., Zitz U., Hofacre C., Domig K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019;98:1791–1804. doi: 10.3382/ps/pey539. PubMed DOI PMC
Maasjost J., Mühldorfer K., de Jäckel S.C., Hafez H.M. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany. Avian Dis. 2015;59:143–148. doi: 10.1637/10928-090314-RegR. PubMed DOI
Moawad A.A., Hotzel H., Awad O., Roesler U., Hafez H.M., Tomaso H., Neubauer H., El-Adawy H. Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms. 2019;7:476. doi: 10.3390/microorganisms7100476. PubMed DOI PMC
El-Adawy H., Ahmed M.F.E., Hotzel H., Tomaso H., Tenhagen B.-A., Hartung J., Neubauer H., Hafez H.M. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli recovered from organic turkey farms in Germany. Poult. Sci. 2015;94:2831–2837. doi: 10.3382/ps/pev259. PubMed DOI
Morrell J.M., Wallgren M. Alternatives to Antibiotics in Semen Extenders: A Review. Pathogens. 2014;3:934–946. doi: 10.3390/pathogens3040934. PubMed DOI PMC
Shanmugam M., Vinoth A., Rajaravindra K.S., Rajkumar U. Evaluation of semen quality in roosters of different age during hot climatic condition. Anim. Reprod. Sci. 2014;145:81–85. doi: 10.1016/j.anireprosci.2013.12.015. PubMed DOI
Fouad A.M., El-Senousey H.K., Ruan D., Xia W., Chen W., Wang S., Zheng C. Nutritional modulation of fertility in male poultry. Poult. Sci. 2020;99:5637–5646. doi: 10.1016/j.psj.2020.06.083. PubMed DOI PMC
Prabakar G., Gopi M., Kolluri G., Rokade J.J., Pavulraj S., Pearlin B.V., Sudamrao Khillare G., Madhupriya V., Tyagi J.S., Mohan J. Seasonal variations on semen quality attributes in turkey and egg type chicken male breeders. Int. J. Biometeorol. 2022;66:1547–1560. doi: 10.1007/s00484-022-02299-x. PubMed DOI
Froman D.P., Rhoads D.D. Breeding and Genetics Symposium: A systems biology definition for chicken semen quality. J. Anim. Sci. 2013;91:523–529. doi: 10.2527/jas.2012-5681. PubMed DOI
Cox N.A., Stern N.J., Wilson J.L., Musgrove M.T., Buhr R.J., Hiett K.L. Isolation of Campylobacter spp. from Semen Samples of Commercial Broiler Breeder Roosters. Avian Dis. 2002;46:717–720. doi: 10.1637/0005-2086(2002)046[0717:IOCSFS]2.0.CO;2. PubMed DOI
Haines M.D., Parker H.M., McDaniel C.D., Kiess A.S. Impact of 6 different intestinal bacteria on broiler breeder sperm motility in vitro. Poult. Sci. 2013;92:2174–2181. doi: 10.3382/ps.2013-03109. PubMed DOI
Vizzier-Thaxton Y., Cox N.A., Richardson L.J., Buhr R.J., McDaniel C.D., Cosby D.E., Wilson J.L., Bourassa D.V., Ard M.B. Apparent Attachment of Campylobacter and Salmonella to Broiler Breeder Rooster Spermatozoa. Poult. Sci. 2006;85:619–624. doi: 10.1093/ps/85.4.619. PubMed DOI
Hutchings L.M., Andrews F.N. Isolation of Brucella suis from boar’s semen. J. Bacteriol. 1945;50:715–718. doi: 10.1128/JB.50.6.715-718.1945. PubMed DOI
Rosenthal L. Agglutinating Properties of Escherichia coli: Agglutination of erythroces, leucocytes, thrombocytes, spermatozoa, spores of molds, and pollen by strains of E. coli. J. Bacteriol. 1943;45:545–550. doi: 10.1128/jb.45.6.545-550.1943. PubMed DOI PMC
Reiber M.A., McInroy J.A., Conner D.E. Enumeration and Identification of Bacteria in Chicken Semen. Poult. Sci. 1995;74:795–799. doi: 10.3382/ps.0740795. PubMed DOI
Ahmed K. Bacterial Flora of Poultry Semen and Their Antibiotic Sensitivity Pattern. Int. J. Appl. Pure Sci. Agric. 2015;1:39–41.
Tesfay H.H., Sun Y., Li Y., Shi L., Fan J., Wang P., Zong Y., Ni A., Ma H., Mani A.I., et al. Comparative studies of semen quality traits and sperm kinematic parameters in relation to fertility rate between 2 genetic groups of breed lines. Poult. Sci. 2020;99:6139–6146. doi: 10.1016/j.psj.2020.06.088. PubMed DOI PMC
Buzala M., Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult. Sci. 2016;95:2151–2159. doi: 10.3382/ps/pew173. PubMed DOI
Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Qattan S.Y.A., Batiha G.E., Khafaga A.F., Abdel-Moneim A.-M.E., Alagawany M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020;104:1835–1850. doi: 10.1111/jpn.13454. PubMed DOI
Lenický M., Kačániová M., Ďuračka M., Zajacová Ž., Muráňová K., Tvrdá E. Bovine spermatozoa and Lactobacilli interactions: Deterioration or improvement of the sperm vitality? Anim. Reprod. Sci. 2022;247:107131. doi: 10.1016/j.anireprosci.2022.107131. DOI
Zhang F., Dai J., Chen T. Role of Lactobacillus in Female Infertility Via Modulating Sperm Agglutination and Immobilization. Front. Cell. Infect. Microbiol. 2021;10:620529. doi: 10.3389/fcimb.2020.620529. PubMed DOI PMC
Benoff S., Cooper G.W., Centola G.M., Jacob A., Hershlag A., Hurley I.R. Metal ions and human sperm mannose receptors. Andrologia. 2000;32:317–329. doi: 10.1046/j.1439-0272.2000.00401.x. PubMed DOI
Agarwal J., Srivastava S., Singh M. Pathogenomics of uropathogenic Escherichia coli. Indian, J. Med. Microbiol. 2012;30:141–149. doi: 10.4103/0255-0857.96657. PubMed DOI
Wolff H., Panhans A., Stolz W., Meurer M. Adherence of Escherichia coli to sperm: A mannose mediated phenomenon leading to agglutination of sperm and E. coli. Fertil. Steril. 1993;60:154–158. doi: 10.1016/S0015-0282(16)56054-3. PubMed DOI
Fraczek M., Piasecka M., Gaczarzewicz D., Szumala-Kakol A., Kazienko A., Lenart S., Laszczynska M., Kurpisz M. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus. Andrologia. 2012;44:315–329. doi: 10.1111/j.1439-0272.2012.01283.x. PubMed DOI
Fraczek M., Hryhorowicz M., Gill K., Zarzycka M., Gaczarzewicz D., Jedrzejczak P., Bilinska B., Piasecka M., Kurpisz M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J. Reprod. Immunol. 2016;118:18–27. doi: 10.1016/j.jri.2016.08.006. PubMed DOI
Sanocka D., Frączek M., Jędrzejczak P., Szumała-Kąkol A., Kurpisz M. Male genital tract infection: An influence of leukocytes and bacteria on semen. J. Reprod. Immunol. 2004;62:111–124. doi: 10.1016/j.jri.2003.10.005. PubMed DOI
Fraczek M., Kurpisz M. Mechanisms of the harmful effects of bacterial semen infection on ejaculated human spermatozoa: Potential inflammatory markers in semen. Folia Histochem. Cytobiol. 2015;53:201–217. doi: 10.5603/fhc.a2015.0019. PubMed DOI
Martínez P., Proverbio F., Camejo M.I. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian, J. Androl. 2007;9:102–107. doi: 10.1111/j.1745-7262.2007.00238.x. PubMed DOI
Payan-Carreira R., Santana I., Pires M.A., Holst B.S., Rodriguez-Martinez H. Localization of tumor necrosis factor in the canine testis, epididymis and spermatozoa. Theriogenology. 2012;77:1540–1548. doi: 10.1016/j.theriogenology.2011.11.021. PubMed DOI
Vera O., Vásqucz L.A., Muñoz M.G. Semen quality and presence of cytokines in seminal fluid of bull ejaculates. Theriogenology. 2003;60:553–558. doi: 10.1016/S0093-691X(03)00031-1. PubMed DOI
Barranco I., Padilla L., Pérez-Patiño C., Vazquez J.M., Martínez E.A., Rodríguez-Martínez H., Roca J., Parrilla I. Seminal Plasma Cytokines Are Predictive of the Outcome of Boar Sperm Preservation. Front. Vet. Sci. 2019;6:436. doi: 10.3389/fvets.2019.00436. PubMed DOI PMC
Fraczek M., Szumala-Kakol A., Dworacki G., Sanocka D., Kurpisz M. In vitro reconstruction of inflammatory reaction in human semen: Effect on sperm DNA fragmentation. J. Reprod. Immunol. 2013;100:76–85. doi: 10.1016/j.jri.2013.09.005. PubMed DOI
Tvrdá E., Kováčik A., Ďuračka M., Albertová M., Lukáč N. Associations between inflammatory factors, lipid peroxidation and antioxidant capacity in bovine seminal plasma. Sci. Papers Anim. Sci. Biotechnol. 2016;49:38–44.
Tvrdá E., Benko F., Ďuračka M. Oxidative Stress as an Underlying Mechanism of Bacteria-Inflicted Damage to Male Gametes. Oxygen. 2022;2:547–569. doi: 10.3390/oxygen2040036. DOI
Bording-Jorgensen M., Alipour M., Danesh G., Wine E. Inflammasome Activation by ATP Enhances Citrobacter rodentium Clearance through ROS Generation. Cell. Physiol. Biochem. 2017;41:193–204. doi: 10.1159/000455988. PubMed DOI
Schulte M., Frick K., Gnandt E., Jurkovic S., Burschel S., Labatzke R., Aierstock K., Fiegen D., Wohlwend D., Gerhardt S., et al. A mechanism to prevent production of reactive oxygen species by Escherichia coli respiratory complex I. Nat. Commun. 2019;10:2551. doi: 10.1038/s41467-019-10429-0. PubMed DOI PMC
Gaupp R., Ledala N., Somerville G.A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. 2012;2:33. doi: 10.3389/fcimb.2012.00033. PubMed DOI PMC
Takeda K., Uchiyama K., Kinukawa M., Tagami T., Kaneda M., Watanabe S. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J. Reprod. Dev. 2015;61:185–190. doi: 10.1262/jrd.2014-140. PubMed DOI PMC
Collodel G., Baccetti B., Capitani S., Moretti E. Necrosis in human spermatozoa. I. Ultrastructural features and FISH study in semen from patients with urogenital infections. J. Submicrosc. Cytol. Pathol. 2007;37:67–73. PubMed
Al Azad M.A.R., Rahman M.M., Amin R., Begum M.I.A., Fries R., Husna A., Khairalla A.S., Badruzzaman A.T.M., El Zowalaty M.E., Na Lampang K., et al. Susceptibility and Multidrug Resistance Patterns of Escherichia coli Isolated from Cloacal Swabs of Live Broiler Chickens in Bangladesh. Pathogens. 2019;8:118. doi: 10.3390/pathogens8030118. PubMed DOI PMC
Richter A., Sting R., Popp C., Rau J., Tenhagen B.-A., Guerra B., Hafez H.M., Fetsch A. Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiol. Infect. 2012;140:2223–2232. doi: 10.1017/S095026881200009X. PubMed DOI PMC
Słowińska M., Nynca J., Arnold G.J., Fröhlich T., Jankowski J., Kozłowski K., Mostek A., Ciereszko A. Proteomic identification of turkey (Meleagris gallopavo) seminal plasma proteins. Poult. Sci. 2017;96:3422–3435. doi: 10.3382/ps/pex132. PubMed DOI
Zhang G., Sunkara L.T. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications. Pharmaceuticals. 2014;7:220–247. doi: 10.3390/ph7030220. PubMed DOI PMC
Das S.C., Isobe N., Yoshimura Y. Expression of Toll-like receptors and avian β-defensins and their changes in response to bacterial components in chicken sperm. Poult. Sci. 2011;90:417–425. doi: 10.3382/ps.2010-00850. PubMed DOI
Duracka M., Galovičová L., Kunová S., Kačániová M., Lukáč N., Tvrdá E. The bacterial presence in bovine semen and expression of seminal plasma proteins. Reprod. Domest. Anim. 2022;57:65–106. doi: 10.1111/rda.14244. DOI
Kim W.H., Lillehoj H.S. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim. Feed. Sci. Technol. 2019;250:41–50. doi: 10.1016/j.anifeedsci.2018.09.016. DOI
Brown K.L., Poon G.F.T., Birkenhead D., Pena O.N.M., Falsafi R., Dahlgren C., Karlsson A., Bylund J., Hancock R.E.W., Johnson P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. J. Immunol. 2011;186:5497–5505. doi: 10.4049/jimmunol.1002508. PubMed DOI
Choi K.-Y.G., Mookherjee N. Multiple Immune-Modulatory Functions of Cathelicidin Host Defense Peptides. Front. Immunol. 2012;3:149. doi: 10.3389/fimmu.2012.00149. PubMed DOI PMC
Horvatić A., Guillemin N., Kaab H., McKeegan D., O’Reilly E., Bain M., Kuleš J., Eckersall P.D. Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. J. Proteom. 2019;192:64–77. doi: 10.1016/j.jprot.2018.08.009. PubMed DOI
Kuz’min M.D., Ivanov I.uB., Bukharin O.V. Use of lysozyme in the treatment of male infertility. Urol. Nefrol. 1998;3:46–48. PubMed
Sotirov L., Dimitrov S., Jeliazkov E. Semen lysozyme levels and semen quality in Turkeys (Meleagris gallopavo) fed with variousdietary protein levels. Revue Méd. Vét. 2002;153:815–818.
Rowe M., Czirják G.Á., Ligjeld J.T., Giraudeau M. Lysozyme-associated bactericidal activity in the ejaculate of a wild pas-serine. Biol. J. Linn. Soc. 2013;109:92–100. doi: 10.1111/bij.12044. DOI
Kačániová M., Terentjeva M., Štefániková J., Žiarovská J., Savitskaya T., Grinshpan D., Kowalczewski P.Ł., Vukovic N., Tvrdá E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics. 2020;9:765. doi: 10.3390/antibiotics9110765. PubMed DOI PMC
Tvrdá E., Petrovičová M., Benko F., Ďuračka M., Galovičová L., Slanina T., Kačániová M. Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens. Pharmaceutics. 2023;15:65. doi: 10.3390/pharmaceutics15010065. PubMed DOI PMC
Muller C.H., Lee T.K.Y., Montaño M.A. Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma. Methods Mol. Biol. 2013;927:363–376. doi: 10.1007/978-1-62703-038-0_31. PubMed DOI
Weber D., Davies M.J., Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol. 2015;5:367–380. doi: 10.1016/j.redox.2015.06.005. PubMed DOI PMC