• This record comes from PubMed

Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen

. 2021 Jun 14 ; 11 (6) : . [epub] 20210614

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-15-0544 Agentúra na Podporu Výskumu a Vývoja
1/0239/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
034SPU-4/2019 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

This study focused on the identification of naturally occurring bacteria in the reproductive fluid and impact on the quality of ejaculates obtained from the turkey breed British United Turkeys (BUT) Big 6 (n = 60). We determined possible relationships between the bacterial load and advanced sperm quality parameters that are important for effective artificial insemination and high fertility, as well as the concentration of selected antimicrobial proteins and pro-inflammatory markers of turkey semen. Sperm motility was assessed with computer-assisted sperm analysis (CASA), while the membrane and acrosome integrity were examined with smearing and staining methods. Reactive oxygen species (ROS) generation was quantified via luminometry, sperm DNA fragmentation was evaluated using the TUNEL assay, and the JC-1 assay was applied to evaluate the mitochondrial membrane potential. Cell lysates were prepared to investigate the extent of lipid and protein oxidation. Furthermore, levels of interleukins 1 and 6 (IL-1, IL-6), C-reactive protein, cathelicidin, and β-defensin were quantified in the seminal plasma using the ELISA method. The most dominant species identified by the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was Escherichia coli, Proteus mirabilis, Staphylococcus lentus, and Citrobacter braakii. The bacterial load had a negative effect on the sperm motility (p < 0.001), as well as membrane (p < 0.05) and acrosome integrity (p < 0.01). A strong positive relationship between the bacterial load and DNA fragmentation (p < 0.001) was detected as well. Positive associations were recorded between the increasing presence of bacteria, ROS overgeneration (p < 0.001), and a subsequent oxidative damage to the proteins (p < 0.001) and lipids (p < 0.01). It was revealed that the antimicrobial peptides β-defensin (p < 0.001) and cathelicidin (p < 0.001) had a positive relationship with the motility. In contrast, pro-inflammatory markers, such as IL-1 (p < 0.001) and IL-6 (p < 0.001), had a negative impact on the motion behavior of turkey spermatozoa. Our results suggest that the semen quality may be notably affected by the bacterial quantity as well as quality. It seems that bacteriospermia is associated with inflammatory processes, oxidative stress, sperm structural deterioration, and a subsequent risk for a failed artificial insemination in turkey breeding.

See more in PubMed

Surai P.F., Fisinin V.I. Vitagenes in Poultry Production: Part 1. Technological and Environmental Stresses. Worlds Poult. Sci. J. 2016;72:721–734. doi: 10.1017/S0043933916000714. DOI

Alkan S., Baran A., Özdaş Ö.B., Evecen M. Morphological Defects in Turkey Semen. Turk. J. Vet. Anim. Sci. 2002;26:1087–1092.

Jamieson B.G.M. Reproductive Biology and Phylogeny of Birds, Part A: Phylogeny, Morphology, Hormones and Fertilization. CRC Press; Oxford, UK: 2011.

Omprakash A.V., Venkatesh G. Effect of Vaginal Douching and Different Semen Extenders on Bacterial Load and Fertility in Turkeys. Br. Poult. Sci. 2006;47:523–526. doi: 10.1080/00071660600829209. PubMed DOI

Fraczek M., Kurpisz M. Mechanisms of the Harmful Effects of Bacterial Semen Infection on Ejaculated Human Spermatozoa: Potential Inflammatory Markers in Semen. Folia Histochem. Cytobiol. 2015;53:201–217. doi: 10.5603/fhc.a2015.0019. PubMed DOI

Tvrdá E., Belić L., Ďuračka M., Kováčik A., Kačániová M., Lukáč N. The Presence of Bacterial Species in Bovine Semen and Their Impact on the Sperm Quality. Anim. Reprod. Sci. 2018;194:e3. doi: 10.1016/j.anireprosci.2018.04.012. DOI

Duracka M., Lukac N., Kacaniova M., Kantor A., Hleba L., Ondruska L., Tvrda E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules. 2019;24:4239. doi: 10.3390/molecules24234329. PubMed DOI PMC

Ďuračka M., Tvrdá E. The presence of bacterial species in boar semen and their impact on the sperm quality and oxidative balance. J. Anim. Sci. 2018;96:501. doi: 10.1093/jas/sky404.1094. DOI

Zhang G., Sunkara L.T. Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals. 2014;7:220–247. doi: 10.3390/ph7030220. PubMed DOI PMC

Roberts J.R., Souillard R., Bertin J. Avian diseases which affect egg production and quality. In: Nys Y., Bain M., Van Immerseel F., editors. Improving the Safety and Quality of Eggs and Egg Products. 1st ed. Woodhead Publishing; Ambridge, UK: 2011. pp. 376–393.

Moyle T., Drake K., Gole V., Chousalka K., Hazel S. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment. Comp. Immunol. Microbiol. Infect. Dis. 2016;49:88–94. doi: 10.1016/j.cimid.2016.10.005. PubMed DOI

Blake D.P., Knox J., Dehaeck B., Huntington B., Rathinam T., Ravipati V., Ayoade S., Gilbert W., Adebambo A.O., Jatau I.D., et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020;51:115. doi: 10.1186/s13567-020-00837-2. PubMed DOI PMC

Wibisono F.J., Sumiarto B., Kusumastuti T.I. Economic Losses Estimation of Pathogenic Escherichia coli Infection in Indonesian Poultry Farming. Bull. Anim. Sci. 2018;42:341–346. doi: 10.21059/buletinpeternak.v42i4.37505. DOI

Rashid M., Akbar H., Bakhsh A., Rashid M.I., Hassan M.A., Ullah R., Hussain T., Manzoor S., Yin H. Assessing the prevalence and economic significance of coccidiosis individually and in combination with concurrent infections in Pakistani commercial poultry farms. Poult. Sci. 2019;98:1167–1175. doi: 10.3382/ps/pey522. PubMed DOI

Landman W.J.M., van Eck J.H.H. The incidence and economic impact of the Escherichia coli peritonitis syndrome in Dutch poultry farming. Avian Pathol. 2015;44:370–378. doi: 10.1080/03079457.2015.1060584. PubMed DOI

Christensen H., Bachmeier J., Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC) Avian Pathol. 2021:1–12. doi: 10.1080/03079457.2020.1845300. PubMed DOI

Kahn L.H., Bergeron G., Bourassa M.W., De Vegt B., Gill J., Gomes F., Malouin F., Opengart K., Ritter G.D., Singer R.S., et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019;1441:31–39. doi: 10.1111/nyas.14034. PubMed DOI PMC

Al Azad M.A.R., Rahman M.M., Amin R., Begum M.I.A., Fries R., Husna A., Khairalla A.S., Badruzzaman A.T.M., El Zowalaty M.E., Lampang K.N., et al. Susceptibility and Multidrug Resistance Patterns of Escherichia Coli Isolated from Cloacal Swabs of Live Broiler Chickens in Bangladesh. Pathogens. 2019;8:118. doi: 10.3390/pathogens8030118. PubMed DOI PMC

Roth N., Käsbohrer A., Mayrhofer S., Zitz U., Hofacre C., Domig K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019;98:1791–1804. doi: 10.3382/ps/pey539. PubMed DOI PMC

Morrell J.M., Wallgren M. Alternatives to antibiotics in semen extenders: A review. Pathogens. 2014;3:934–946. doi: 10.3390/pathogens3040934. PubMed DOI PMC

Wieser A., Schneider L., Jung J., Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review) Appl. Microbiol. Biotechnol. 2012;93:965–974. doi: 10.1007/s00253-011-3783-4. PubMed DOI

Masarikova M., Mrackova M., Sedlinska M. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in identification of stallion semen bacterial contamination. J. Eq. Vet. Sci. 2014;34:833–836. doi: 10.1016/j.jevs.2014.01.013. DOI

Slanina T., Miškeje M., Tirpák F., Błaszczyk M., Formicki G., Massányi P. Caffeine Strongly Improves Motility Parameters of Turkey Spermatozoa with No Effect on Cell Viability. Acta Vet. Hung. 2018;66:137–150. doi: 10.1556/004.2018.013. PubMed DOI

Rui B.R., Angrimani D.S.R., Losano J.D.A., Bicudo L.C., Nichi M., Pereira R.J.G. Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa. Anim. Reprod. Sci. 2017;187:133–140. doi: 10.1016/j.anireprosci.2017.10.017. PubMed DOI

Kuzelova L., Vasicek J., Chrenek P. Influence of Macrophages on the Rooster Spermatozoa Quality. Reprod. Domest. Anim. 2015;50:580–586. doi: 10.1111/rda.12528. PubMed DOI

Kovacik A., Tirpak F., Tomka M., Miskeje M., Tvrda E., Arvay J., Andreji J., Slanina T., Gabor M., Hleba L., et al. Trace Elements Content in Semen and Their Interactions with Sperm Quality and RedOx Status in Freshwater Fish Cyprinus Carpio: A Correlation Study. J. Trace Elem. Med. Biol. 2018;50:399–407. doi: 10.1016/j.jtemb.2018.08.005. PubMed DOI

Weber D., Davies M.J., Grune T. Determination of Protein Carbonyls in Plasma, Cell Extracts, Tissue Homogenates, Isolated Proteins: Focus on Sample Preparation and Derivatization Conditions. Redox Biol. 2015;5:367–380. doi: 10.1016/j.redox.2015.06.005. PubMed DOI PMC

Kačániová M., Terentjeva M., Štefániková J., Žiarovská J., Savitskaya T., Grinshpan D., Kowalczewski P.Ł., Vukovic N., Tvrdá E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics. 2020;9:765. doi: 10.3390/antibiotics9110765. PubMed DOI PMC

Triplett M.D., Parker H.M., McDaniel C.D., Kiess A.S. Influence of 6 Different Intestinal Bacteria on Beltsville Small White Turkey Semen. Poult. Sci. 2016;95:1918–1926. doi: 10.3382/ps/pew119. PubMed DOI

Ahmed K. Bacterial Flora of Poultry Semen and Their Antibiotic Sensitivity Pattern. Int. J. Appl. Pure Sci. Agric. 2015;1:39–41.

Cole K., Donoghue A., Blore P., Donoghue D. Isolation and Prevalence of Campylobacter in the Reproductive Tracts and Semen of Commercial Turkeys. Avian Dis. 2004;48:625–630. doi: 10.1637/7199-042504R. PubMed DOI

Gale C., Brown K.I. The Identification of Bacteria Contaminating Collected Semen and the Use of Antibiotics in Their Control. Poult. Sci. 1961;40:50–55. doi: 10.3382/ps.0400050. DOI

Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Qattan S.Y.A., Batiha G.E., Khafaga A.F., Abdel-Moneim A.M.E., Alagawany M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020;104:1835–1850. doi: 10.1111/jpn.13454. PubMed DOI

Cottell E., Harrison R.F., McCaffrey M., Walsh T., Mallon E., Barry-Kinsella C. Are Seminal Fluid Microorganisms of Significance or Merely Contaminants? Fertil. Steril. 2000;74:465–470. doi: 10.1016/S0015-0282(00)00709-3. PubMed DOI

Schulz M., Sánchez R., Soto L., Risopatrón J., Villegas J. Effect of Escherichia Coli and Its Soluble Factors on Mitochondrial Membrane Potential, Phosphatidylserine Translocation, Viability, and Motility of Human Spermatozoa. Fertil. Steril. 2010;94:619–623. doi: 10.1016/j.fertnstert.2009.01.140. PubMed DOI

Dutta S., Sengupta P., Izuka E., Menuba I., Jegasothy R., Nwagha U. Staphylococcal Infections and Infertility: Mechanisms and Management. Mol. Cell. Biochem. 2020;474:57–72. doi: 10.1007/s11010-020-03833-4. PubMed DOI

Haines M.D., Parker H.M., McDaniel C.D., Kiess A.S. Impact of 6 Different Intestinal Bacteria on Broiler Breeder Sperm Motility in Vitro. Poult. Sci. 2013;92:2174–2181. doi: 10.3382/ps.2013-03109. PubMed DOI

Fujita Y., Mihara T., Okazaki T., Shitanaka M., Kushino R., Ikeda C., Negishi H., Liu Z., Richards J.S., Shimada M. Toll-like Receptors (TLR) 2 and 4 on Human Sperm Recognize Bacterial Endotoxins and Mediate Apoptosis. Hum. Reprod. 2011;26:2799–2806. doi: 10.1093/humrep/der234. PubMed DOI PMC

Das S.C., Isobe N., Yoshimura Y. Expression of Toll-like Receptors and Avian β-Defensins and Their Changes in Response to Bacterial Components in Chicken Sperm. Poult. Sci. 2011;90:417–425. doi: 10.3382/ps.2010-00850. PubMed DOI

Eldamnhoury E.M., Elatrash G.A., Rashwan H.M., El-Sakka A.I. Association between Leukocytospermia and Semen Interleukin-6 and Tumor Necrosis Factor-Alpha in Infertile Men. Andrology. 2018;6:775–780. doi: 10.1111/andr.12513. PubMed DOI

Hagan S., Khurana N., Chandra S., Abdel-Mageed A.B., Mondal D., Hellstrom W.J.G., Sikka S.C. Differential Expression of Novel Biomarkers (TLR-2, TLR-4, COX-2, and Nrf-2) of Inflammation and Oxidative Stress in Semen of Leukocytospermia Patients. Andrology. 2015;3:848–855. doi: 10.1111/andr.12074. PubMed DOI

Fraczek M., Hryhorowicz M., Gill K., Zarzycka M., Gaczarzewicz D., Jedrzejczak P., Bilinska B., Piasecka M., Kurpisz M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J. Reprod. Immunol. 2016;118:18–27. doi: 10.1016/j.jri.2016.08.006. PubMed DOI

Zhang Q.F., Zhang Y.J., Wang S., Wei S., Li F., Feng K.J. The effect of screening and treatment of Ureaplasma urealyticum infection on semen parameters in asymptomatic leukocytospermia: A case–control study. BMC Urol. 2020;20:165. doi: 10.1186/s12894-020-00742-y. PubMed DOI PMC

Fichtner T., Kotarski F., Hermosilla C., Taubert A., Wrenzycki C. Semen extender and seminal plasma alter the extent of neutrophil extracellular traps (NET) formation in cattle. Theriogenology. 2021;160:72–80. doi: 10.1016/j.theriogenology.2020.10.032. PubMed DOI

Miró J., Catalán J., Marín H., Yánez-Ortiz I., Yeste M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey. Animals. 2021;11:1388. doi: 10.3390/ani11051388. PubMed DOI PMC

Schulz M., Zambrano F., Schuppe H.C., Wagenlehner F., Taubert A., Ulrich G., Sánchez R., Hermosilla C. Determination of leucocyte extracellular traps (ETs) in seminal fluid (ex vivo) in infertile patients-A pilot study. Andrologia. 2019;51:e13356. doi: 10.1111/and.13356. PubMed DOI

Zambrano F., Schulz M., Pilatz A., Wagenlehner F., Schuppe H.C., Conejeros I., Uribe P., Taubert A., Sánchez R., Hermosilla C. Increase of leucocyte-derived extracellular traps (ETs) in semen samples from human acute epididymitis patients-a pilot study. J. Assist. Reprod. Genet. 2020;37:2223–2231. doi: 10.1007/s10815-020-01883-7. PubMed DOI PMC

Zeyad A., Hamad M., Amor H., Hammadeh M.E. Relationships between bacteriospermia, DNA integrity, nuclear protamine alteration, sperm quality and ICSI outcome. Reprod Biol. 2018;18:115–121. doi: 10.1016/j.repbio.2018.01.010. PubMed DOI

Pagliuca C., Cariati F., Bagnulo F., Scaglione E., Carotenuto C., Farina F., D’Argenio V., Carraturo F., D’Aprile P., Vitiello M., et al. Microbiological Evaluation and Sperm DNA Fragmentation in Semen Samples of Patients Undergoing Fertility Investigation. Genes. 2021;12:654. doi: 10.3390/genes12050654. PubMed DOI PMC

Fraczek M., Szumala-Kakol A., Jedrzejczak P., Kamieniczna M., Kurpisz M. Bacteria Trigger Oxygen Radical Release and Sperm Lipid Peroxidation in in Vitro Model of Semen Inflammation. Fertil. Steril. 2007;88:1076–1085. doi: 10.1016/j.fertnstert.2006.12.025. PubMed DOI

Rui B.R., Shibuya F.Y., Kawaoku A.J.T., Losano J.D.A., Angrimani D.S.R., Dalmazzo A., Nichi M., Pereira R.J.G. Impact of Induced Levels of Specific Free Radicals and Malondialdehyde on Chicken Semen Quality and Fertility. Theriogenology. 2017;90:11–19. doi: 10.1016/j.theriogenology.2016.11.001. PubMed DOI

Aitken R.J., Drevet J.R. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants. 2020;9:111. doi: 10.3390/antiox9020111. PubMed DOI PMC

Kim W.H., Lillehoj H.S. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim. Feed Sci. Technol. 2019;250:41–50. doi: 10.1016/j.anifeedsci.2018.09.016. DOI

Słowińska M., Nynca J., Arnold G.J., Fröhlich T., Jankowski J., Kozłowski K., Mostek A., Ciereszko A. Proteomic Identification of Turkey (Meleagris Gallopavo) Seminal Plasma Proteins. Poult. Sci. 2017;96:3422–3435. doi: 10.3382/ps/pex132. PubMed DOI

Brown K.L., Poon G.F.T., Birkenhead D., Pena O.N., Falsafi R., Dahlgren C., Karlsson A., Bylund J., Hancock R.E.W., Johnson P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. J. Immunol. 2011;186:5497–5505. doi: 10.4049/jimmunol.1002508. PubMed DOI

Choi K.-Y.G., Mookherjee N. Multiple Immune-Modulatory Functions of Cathelicidin Host Defense Peptides. Front. Immunol. 2012;3:149. doi: 10.3389/fimmu.2012.00149. PubMed DOI PMC

Horvatić A., Guillemin N., Kaab H., McKeegan D., O’Reilly E., Bain M., Kuleš J., Eckersall P.D. Quantitative Proteomics Using Tandem Mass Tags in Relation to the Acute Phase Protein Response in Chicken Challenged with Escherichia Coli Lipopolysaccharide Endotoxin. J. Proteom. 2019;192:64–77. doi: 10.1016/j.jprot.2018.08.009. PubMed DOI

Fraczek M., Kurpisz M. Cytokines in the Male Reproductive Tract and Their Role in Infertility Disorders. J. Reprod. Immunol. 2015;108:98–104. doi: 10.1016/j.jri.2015.02.001. PubMed DOI

Kurkowska W., Bogacz A., Janiszewska M., Gabryś E., Tiszler M., Bellanti F., Kasperczyk S., Machoń-Grecka A., Dobrakowski M., Kasperczyk A. Oxidative Stress is Associated with Reduced Sperm Motility in Normal Semen. Am. J. Mens Health. 2020;14:1557988320939731. doi: 10.1177/1557988320939731. PubMed DOI PMC

Cavaillon J.M. Exotoxins and Endotoxins: Inducers of Inflammatory Cytokines. Toxicon. 2018;149:45–53. doi: 10.1016/j.toxicon.2017.10.016. PubMed DOI

Fraczek M., Szumala-Kakol A., Dworacki G., Sanocka D., Kurpisz M. In Vitro Reconstruction of Inflammatory Reaction in Human Semen: Effect on Sperm DNA Fragmentation. J. Reprod. Immunol. 2013;100:76–85. doi: 10.1016/j.jri.2013.09.005. PubMed DOI

Martínez P., Proverbio F., Camejo M. Sperm Lipid Peroxidation and Pro-Inflammatory Cytokines. Asian J. Androl. 2007;9:102–107. doi: 10.1111/j.1745-7262.2007.00238.x. PubMed DOI

Escadafal C., Incardona S., Fernandez-Carballo B.L., Dittrich S. The good and the bad: Using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings. BMJ Glob. Health. 2020;5:e002396. doi: 10.1136/bmjgh-2020-002396. PubMed DOI PMC

Leisegang K., Bouic P.J.D., Henkel R.R. Metabolic Syndrome Is Associated with Increased Seminal Inflammatory Cytokines and Reproductive Dysfunction in a Case-Controlled Male Cohort. Am. J. Reprod. Immunol. 2016;76:155–163. doi: 10.1111/aji.12529. PubMed DOI

Benrabia I., Hamdi T.M., Shehata A.A., Neubauer H., Wareth G. Methicillin-Resistant Staphylococcus Aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Vet Sci. 2020;7:54. doi: 10.3390/vetsci7020054. PubMed DOI PMC

Schulze M., Nitsche-Melkus E., Hensel B., Jung M., Jakop U. Antibiotics and Their Alternatives in Artificial Breeding in Livestock. Anim. Reprod. Sci. 2020;220:106284. doi: 10.1016/j.anireprosci.2020.106284. PubMed DOI

Alizadeh F., Javadi M., Karami A.A., Gholaminejad F., Kavianpour M., Haghighian H.K. Curcumin Nanomicelle Improves Semen Parameters, Oxidative Stress, Inflammatory Biomarkers, and Reproductive Hormones in Infertile Men: A Randomized Clinical Trial. Phytother. Res. 2018;32:514–521. doi: 10.1002/ptr.5998. PubMed DOI

Choi K., Emery D., Straub D., Lee C. Percoll Process Can Improve Semen Quality and Fertility in Turkey Breeders. Anim. Biosci. 1999;12:702–707. doi: 10.5713/ajas.1999.702. DOI

Long J.A., Kulkarni G. An effective method for improving the fertility of glycerol-exposed poultry semen. Poult. Sci. 2004;83:1593–1601. doi: 10.1093/ps/83.9.1594. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...