Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-0095
Slovak Research and Development Agency
APVV-20-0058
Slovak Research and Development Agency
VEGA 1/0239/20
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
Drive4SIFood 313011V336
Operational program Integrated Infrastructure
PubMed
36678694
PubMed Central
PMC9861644
DOI
10.3390/pharmaceutics15010065
PII: pharmaceutics15010065
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia, Pseudomonas, Salmonella, antibiotics, bacterial contamination, curcumin, roosters, semen storage,
- Publikační typ
- časopisecké články MeSH
Artificial insemination, as an essential pillar of the modern poultry industry, primarily depends on the quality of semen collected from stud roosters. Since the collection and storage of ejaculates is not a sterile process, antimicrobial agents have become essential supplements to semen extenders. While the use of traditional antibiotics has been challenged because of rising bacterial resistance, natural biomolecules represent an appealing alternative because of their antibacterial and antioxidant properties. As such, this study strived to compare the effects of 50 μmol/L curcumin (CUR) with 31.2 µg/mL kanamycin (KAN) as a conventional antibiotic on rooster sperm quality in the presence of Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Changes in sperm structural integrity and functional activity were monitored at 2 and 24 h of culture. Computer-assisted semen analysis revealed significant sperm motility preservation following treatment with KAN, particularly in the case of Salmonella enterica and Pseudomonas aeruginosa (p < 0.001) after 24 h. On the other hand, CUR was more effective in opposing ROS overproduction by all bacteria (p < 0.05), as determined by luminol-based luminometry, and maintained sperm mitochondrial activity (p < 0.001 in the case of Salmonella enterica; p < 0.05 with respect to Escherichia coli and Pseudomonas aeruginosa), as assessed by the fluorometric JC-1 assay. The TUNEL assay revealed that CUR readily preserved the DNA integrity of rooster sperm exposed to Salmonella enterica (p < 0.01) and Escherichia coli (p < 0.001). The bacteriological analysis showed higher efficiency of KAN in preventing the growth of all selected bacterial species (p < 0.0001) as opposed to CUR. In conclusion, CUR provided protection to rooster spermatozoa against alterations caused by uropathogens, most likely through its antioxidant activity. Hence, CUR supplementation to poultry semen extenders in combination with properly selected antibacterial substances may become an interesting strategy in the management of bacterial contamination during semen storage.
Zobrazit více v PubMed
Mohan J., Sharma S., Kolluri G., Dhama K. History of artificial insemination in poultry, its components and significance. Poult. Sci. J. 2018;74:475–488. doi: 10.1017/S0043933918000430. DOI
Ombelet W., Van Robays J. Artificial insemination history: Hurdles and milestones. Facts Views Vis. Obgyn. 2015;7:137–143. PubMed PMC
Wen C., Mai C., Cai R., Gou Q., Zhang B., Li J., Sun C., Yang N. Inheritance of the duration of fertility in chickens and its correlation with laying performance. Genet. Sel. Evol. 2022;54:41. doi: 10.1186/s12711-022-00733-7. PubMed DOI PMC
Englmaierová M., Tumová E., Charvátová V., Skřivan M. Effects of laying hens housing system on laying performance, egg quality characteristics, and egg microbial contamination. Czech J. Anim. Sci. 2014;59:345–352. doi: 10.17221/7585-CJAS. DOI
Lenický M., Slanina T., Kačániová M., Galovičová L., Petrovičová M., Ďuračka M., Benko F., Kováč J., Tvrdá E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals. 2021;11:1771. doi: 10.3390/ani11061771. PubMed DOI PMC
Gale C., Brown K. The Identification of Bacteria Contaminating Collected Semen and the Use of Antibiotics in Their Control. Poult. Sci. 1961;40:50–55. doi: 10.3382/ps.0400050. DOI
Reiber M.A., McInroy J.A., Conner D.E. Enumeration and identification of bacteria in chicken semen. Poult. Sci. 1995;74:795–799. doi: 10.3382/ps.0740795. PubMed DOI
Cox N.A., Stern N.J., Wilson J.L., Musgrove M.T., Buhr R.J., Hiett K.L. Isolation of Campylobacter spp. from semen samples of commercial broiler breeder roosters. Avian Dis. 2002;46:717–720. doi: 10.1637/0005-2086(2002)046[0717:IOCSFS]2.0.CO;2. PubMed DOI
Haines M.D., Parker H.M., McDaniel C.D., Kiess A.S. Impact of 6 different intestinal bacteria on broiler breeder sperm motility in vitro. Poult. Sci. 2013;92:2174–2181. doi: 10.3382/ps.2013-03109. PubMed DOI
Donoghue A.M., Blore P.J., Cole K., Loskutoff N.M., Donoghue D.J. Detection of Campylobacter or Salmonella in turkey semen and the ability of poultry semen extenders to reduce their concentrations. Poult. Sci. 2004;83:1728–1733. doi: 10.1093/ps/83.10.1728. PubMed DOI
Tvrdá E., Bučko O., Rojková K., Ďuračka M., Kunová S., Kováč J., Benko F., Kačániová M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals. 2021;11:3320. doi: 10.3390/ani11113320. PubMed DOI PMC
Ďuračka M., Belić L., Tokárová K., Žiarovská J., Kačániová M., Lukáč N., Tvrdá E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst. Biol. Reprod. Med. 2021;67:438–449. doi: 10.1080/19396368.2021.1958028. PubMed DOI
Tvrdá E., Kačániová M., Baláži A., Vašíček J., Vozaf J., Jurčík R., Ďuračka M., Žiarovská J., Kováč J., Chrenek P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals. 2022;12:54. doi: 10.3390/ani12010054. PubMed DOI PMC
Jacobs L.A., McDaniel G.R., Broughton C.W. Microbial flora observed within sections of the oviduct in naturally mated, artificially inseminated, and virgin hens. Poult. Sci. 1978;57:1550–1553. doi: 10.3382/ps.0571550. PubMed DOI
Moyle T., Drake K., Gole V., Chousalka K., Hazel S. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment. Comp. Immunol. Microbiol. Infect. Dis. 2016;49:88–94. doi: 10.1016/j.cimid.2016.10.005. PubMed DOI
Rouger A., Tresse O., Zagorec M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms. 2017;5:50. doi: 10.3390/microorganisms5030050. PubMed DOI PMC
Brillard J.P. Practical aspects of fertility in poultry. World’s Poult. Sci. J. 2003;59:441–446. doi: 10.1079/WPS20030027. DOI
Alkali I.M., Asuku S.O., Umar M.B., Abba A., Mustapha A., Bukar M.M., Waziri M.A. Microbial Contaminants in Fresh and Extended Turkey Semen and their Sensitivity to Antibiotics. Nig. Vet. J. 2020;41:1–6. doi: 10.4314/nvj.v41i1.1. DOI
Murugesan S., Mahapatra R. Cryopreservation of Ghagus chicken semen: Effect of cryoprotectants, diluents and thawing temperature. Reprod. Domest. Anim. 2020;55:951–957. doi: 10.1111/rda.13734. PubMed DOI
Morrell J.M., Wallgren M. Alternatives to Antibiotics in Semen Extenders: A Review. Pathogens. 2014;3:934–946. doi: 10.3390/pathogens3040934. PubMed DOI PMC
El B., Bouchicha A., Kalem A., Mimoune N., Djouadi S., Khelef D., Kaidi R. Study of antibiotics and symbiotic effects on sperm quality using the CASA system. Vet. Stan. 2022;53:377–388. doi: 10.46419/vs.53.4.2. DOI
Cauwerts K., Decostere A., De Graef E.M., Haesebrouck F., Pasmans F. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol. 2007;36:395–399. doi: 10.1080/03079450701589167. PubMed DOI
Tvrdá E., Greifová H., Mackovich A., Hashim F., Lukáč N. Curcumin offers antioxidant protection to cryopreserved bovine semen. Czech J. Anim. Sci. 2018;63:247–255. doi: 10.17221/33/2017-CJAS. DOI
Abdelnour S.A., Hassan M.A.E., Mohammed A.K., Alhimaidi A.R., Al-Gabri N., Al-Khaldi K.O., Swelum A.A. The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm. Animals. 2020;10:1508. doi: 10.3390/ani10091508. PubMed DOI PMC
Lee A.S., Lee S.H., Lee S., Yang B.K. Effects of Curcumin on Sperm Motility, Viability, Mitochondrial Activity and Plasma Membrane Integrity in Boar Semen. Biomed. Sci. Lett. 2017;23:406–410. doi: 10.15616/BSL.2017.23.4.406. DOI
Bucak M.N., Sariozkan S., Tuncer P.B., Sakin F., Atessahin A., Kulaksiz R., Cevik M. The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rum. Res. 2010;89:24–30. doi: 10.1016/j.smallrumres.2009.11.015. PubMed DOI
Jalili F., Zareh-Shahneh A., Zeinoaldini S., Yousefi A.R., Kazemizadeh A. The effect of curcumin on frozen-thawed sperm quality and fertility of broiler breeder roosters. Iran J. Anim. Sci. 2020;50:295–306. doi: 10.22059/ijas.2018.252502.653618. DOI
Jakubczyk K., Drużga A., Katarzyna J., Skonieczna-Żydecka K. Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. Antioxidants. 2020;9:1092. doi: 10.3390/antiox9111092. PubMed DOI PMC
Sharifian P., Yaslianifard S., Fallah P., Aynesazi S., Bakhtiyari M., Mohammadzadeh M. Investigating the Effect of Nano-Curcumin on the Expression of Biofilm Regulatory Genes of Pseudomonas aeruginosa. Infect. Drug Resist. 2020;13:2477–2484. doi: 10.2147/IDR.S263387. PubMed DOI PMC
Adamczak A., Ożarowski M., Karpiński T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals. 2020;13:153. doi: 10.3390/ph13070153. PubMed DOI PMC
Duracka M., Lukac N., Kacaniova M., Kantor A., Hleba L., Ondruska L., Tvrda E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus faecalis in Rabbit Semen. Molecules. 2019;24:4329. doi: 10.3390/molecules24234329. PubMed DOI PMC
Sexton T.J., Jacobs L.A., McDaniel G.R. A new poultry semen extender. 4. Effect of antibacterials in control of bacterial contamination in chicken semen. Poult. Sci. 1980;59:274–281. doi: 10.3382/ps.0590274. PubMed DOI
Shafeeque C.M., Singh R.P., Sharma S.K., Mohan J., Sastry K.V., Kolluri G., Saxena V.K., Tyagi J.S., Kataria J.M., Azeez P.A. Development of a new method for sperm RNA purification in the chicken. Anim. Reprod. Sci. 2014;149:259–265. doi: 10.1016/j.anireprosci.2014.06.032. PubMed DOI
Slanina T., Miškeje M., Tirpák F., Błaszczyk M., Formicki G., Massányi P. Caffeine Strongly Improves Motility Parameters of Turkey Spermatozoa with No Effect on Cell Viability. Acta Vet. Hung. 2018;66:137–150. doi: 10.1556/004.2018.013. PubMed DOI
Boone M.A., Hughes B.L. Contamination of semen and its effect on avian fertility. Poult. Sci. 1970;49:402–404. doi: 10.3382/ps.0490402. PubMed DOI
Ahmed K. Bacterial Flora of Poultry Semen and Their Antibiotic Sensitivity Pattern. Int. J. Appl. Pure Sci. Agric. 2015;1:39–41.
Keller L.H., Benson C.E., Krotec K., Eckroade R.J. Salmonella enteritidis colonization of the reproductive tract and forming and freshly laid eggs of chickens. Infect. Immun. 1995;63:2443–2449. doi: 10.1128/iai.63.7.2443-2449.1995. PubMed DOI PMC
Vizzier-Thaxton Y., Cox N.A., Richardson L.J., Buhr R.J., McDaniel C.D., Cosby D.E., Wilson J.L., Bourassa D.V., Ard M.B. Apparent attachment of Campylobacter and Salmonella to broiler breeder rooster spermatozoa. Poult. Sci. 2006;85:619–624. doi: 10.1093/ps/85.4.619. PubMed DOI
Iaffaldano N., Reale A., Sorrentino E., Coppola R., Di Iorio M., Rosato M.P. Risk of Salmonella transmission via cryopreserved semen in turkey flocks. Poult. Sci. 2010;89:1975–1980. doi: 10.3382/ps.2009-00573. PubMed DOI
Perek M., Elian M., Heller E.D. Bacterial flora of semen and contamination of the reproductive organs of the hen following artificial insemination. Res. Vet. Sci. 1969;10:127–132. doi: 10.1016/S0034-5288(18)34460-6. PubMed DOI
Mezhoud H., Boyen F., Touazi L.H., Garmyn A., Moula N., Smet A., Haesbrouck F., Martel A., Iguer-Ouada M., Touati A. Extended spectrum β-lactamase producing Escherichia coli in broiler breeding roosters: Presence in the reproductive tract and effect on sperm motility. Anim. Reprod. Sci. 2015;159:205–211. doi: 10.1016/j.anireprosci.2015.06.021. PubMed DOI
Negi S., Vander H., Chauhan A., Rana K., Prabha V. Microbial Sperm Immobilization Factor from Pseudomonas aeruginosa as a Contraceptive Agent: An Experimental Study. Ann. Infert. Rep. Endocrin. 2018;1:1007.
Sepúlveda L., Bussalleu E., Yeste M., Bonet S. Effect of Pseudomonas aeruginosa on sperm capacitation and protein phosphorylation of boar spermatozoa. Theriogenology. 2016;85:1421–1431. doi: 10.1016/j.theriogenology.2015.12.025. PubMed DOI
Stones D.H., Krachler A.M. Against the tide: The role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 2016;44:1571–1580. doi: 10.1042/BST20160186. PubMed DOI PMC
Benoff S., Cooper G.W., Centola G.M., Jacob A., Hershlag A., Hurley I.R. Metal ions and human sperm mannose receptors. Andrologia. 2000;32:317–329. doi: 10.1046/j.1439-0272.2000.00401.x. PubMed DOI
Wolff H., Panhans A., Stolz W., Meurer M. Adherence of Escherichia coli to sperm: A mannose mediated phenomenon leading to agglutination of sperm and E. coli. Fertil. Steril. 1993;60:154–158. doi: 10.1016/S0015-0282(16)56054-3. PubMed DOI
Fraczek M., Piasecka M., Gaczarzewicz D., Szumala-Kakol A., Kazienko A., Lenart S., Laszczynska M., Kurpisz M. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus. Andrologia. 2012;44:315–329. doi: 10.1111/j.1439-0272.2012.01283.x. PubMed DOI
Prabha V., Sandhu R., Kaur S., Kaur K., Sarwal A., Mavuduru R.S., Singh S.K. Mechanism of sperm immobilization by Escherichia coli. Adv. Urol. 2010;2010:240268. doi: 10.1155/2010/240268. PubMed DOI PMC
Berger G.K., Smith-Harrison L.I., Sandlow J.I. Sperm agglutination: Prevalence and contributory factors. Andrologia. 2019;51:e13254. doi: 10.1111/and.13254. PubMed DOI
He B., Guo H., Gong Y., Zhao R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology. 2017;87:1–8. doi: 10.1016/j.theriogenology.2016.07.030. PubMed DOI
Ristow L.C., Welch R.A. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? Biochim. Biophys. Acta. 2016;1858:538–545. doi: 10.1016/j.bbamem.2015.08.015. PubMed DOI
Baronetti J.L., Villegas N.A., Aiassa V., Paraje M.G., Albesa I. Hemolysin from Escherichia coli induces oxidative stress in blood. Toxicon. 2013;70:15–20. doi: 10.1016/j.toxicon.2013.03.014. PubMed DOI
Kaur K., Kaur S., Rishi P., Singh S.K., Prabha V. Evidence for the occurrence of receptor in sperm for sperm agglutinating factor isolated from Escherichia coli. Gynecol. Endocrinol. 2012;34:207–209. doi: 10.1155/2013/548497. DOI
Vander H., Gupta S., Kaur S., Kaur K., Prabha V. Characterization of sperm immobilization factor from Escherichia coli and its receptor to study the underlying mechanism of sperm immobilization. Am. J. Biomed. Sci. 2013;5:25–33. doi: 10.5099/aj130100025. DOI
Ďuračka M., Khasanova N., Slanina T., Lukáč N., Tvrdá E. The in vitro effect of kanamycin on the behaviour of bovine spermatozoa. Arch. Ecotoxicol. 2019;1:36–40. doi: 10.36547/ae.2019.1.4.36-40. DOI
Belenky P., Ye J.D., Porter C.B., Cohen N.R., Lobritz M.A., Ferrante T., Jain S., Korry B.J., Schwarz E.G., Walker G.C., et al. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Rep. 2015;13:968–980. doi: 10.1016/j.celrep.2015.09.059. PubMed DOI PMC
Santonastaso M., Mottola F., Iovine C., Colacurci N., Rocco L. Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm. Reprod Sci. 2021;28:2895–2905. doi: 10.1007/s43032-021-00572-9. PubMed DOI PMC
Soleimanzadeh A., Saberivand A. Effect of curcumin on rat sperm morphology after the freeze-thawing process. Vet. Res. Forum. 2013;4:185–189. PubMed PMC
Omur A.D., Coyan K. Protective effects of the antioxidants curcumin, ellagic acid and methionine on motility, mitochondrial transmembrane potential, plasma membrane and acrosome integrity in freeze-thawed Merino ram sperm. Vet. Med. 2016;61:10–16. doi: 10.17221/8677-VETMED. DOI
Tvrdá E., Lovíšek D., Gálová E., Schwarzová M., Kováčiková E., Kunová S., Žiarovská J., Kačániová M. Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. Int. J. Mol. Sci. 2022;23:8678. doi: 10.3390/ijms23158678. PubMed DOI PMC
Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI
Sahebkar A., Cicero A.F.G., Simental-Mendía L.E., Aggarwal B.B., Gupta S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2016;107:234–242. doi: 10.1016/j.phrs.2016.03.026. PubMed DOI
Fraczek M., Kurpisz M. Mechanisms of the harmful effects of bacterial semen infection on ejaculated human spermatozoa: Potential inflammatory markers in semen. Folia Histochem. Cyto. 2015;53:201–217. doi: 10.5603/fhc.a2015.0019. PubMed DOI
Zhao X., Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 2014;21:1–6. doi: 10.1016/j.mib.2014.06.008. PubMed DOI PMC
Aparnak P., Saberivand A. Effects of curcumin on canine semen parameters and expression of NOX5 gene in cryopreserved spermatozoa. Vet. Res. Forum. 2019;10:221–226. doi: 10.30466/vrf.2019.76137.2015. PubMed DOI PMC
Tvrdá E., Tušimová E., Kováčik A., Paál D., Greifová H., Abdramanov A., Lukáč N. Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Anim. Reprod. Sci. 2016;172:10–20. doi: 10.1016/j.anireprosci.2016.06.008. PubMed DOI
Bucak M.N., Başpınar N., Tuncer P.B., Coyan K., Sarıözkan S., Akalın P.P., Büyükleblebici S., Küçükgünay S. Effects of curcumin and dithioerythritol on frozen-thawed bovine semen. Andrologia. 2012;44:102–109. doi: 10.1111/j.1439-0272.2010.01146.x. PubMed DOI
Eini F., Kutenaei M.A., Zareei F., Dastjerdi Z.S., Shirzeyli M.H., Salehi E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with leukocytospermia. BMC Mol. Cell. Biol. 2021;22:42. doi: 10.1186/s12860-021-00380-8. PubMed DOI PMC
Tvrdá E., Benko F., Ďuračka M. Oxidative Stress as an Underlying Mechanism of Bacteria-Inflicted Damage to Male Gametes. Oxygen. 2022;2:547–569. doi: 10.3390/oxygen2040036. DOI
Fraczek M., Hryhorowicz M., Gaczarzewicz D., Szumala-Kakol A., Kolanowski T.J., Beutin L., Kurpisz M. Can apoptosis and necrosis coexist in ejaculated human spermatozoa during in vitro semen bacterial infection? J. Assist. Reprod. Genet. 2015;32:771–779. doi: 10.1007/s10815-015-0462-x. PubMed DOI PMC
Azawi I., Ismaeel M.A. Influence of addition of different antibiotics in semen diluent on viable bacterial count and spermatozoal viability of Awassi ram semen. Vet. World. 2012;5:75–79. doi: 10.5455/vetworld.2012.75-79. DOI
Khaki A. Assessment on the adverse effects of Aminoglycosides and Flouroquinolone on sperm parameters and male reproductive tissue: A systematic review. Iran. J. Reprod. Med. 2015;13:125–134. PubMed PMC
Di Iorio M., Marchisi A., Rocco M., Chrenek P., Iaffaldano N. Comparison of different extenders on the preservability of rabbit semen stored at 5 °C for 72 hours. Ital. J. Anim. Sci. 2014;13:710–714. doi: 10.4081/ijas.2014.3444. DOI
Acharya M., Burke J., Rorie R. Effect of Semen Extender and Storage Temperature on Motility of Ram Spermatozoa. Adv. Reprod. Sci. 2020;8:14–30. doi: 10.4236/arsci.2020.81002. DOI
Zaghloul A.A. Relevance of Honey Bee in Semen Extender on the Quality of Chilled-Stored Ram Semen. J. Anim. Poultry Prod. Mansoura Univ. 2017;8:1–5. doi: 10.21608/jappmu.2017.45740. DOI
Back D.G., Pickett B.W., Voss J.L., Seidel G.E. Effect of antibacterial agents on the motility of stallion spermatozoa at various storage times, temperatures and dilution ratios. J. Anim. Sci. 1975;41:137–143. doi: 10.2527/jas1975.411137x. PubMed DOI
Gross S., Seinige D., Kehrenberg C., Oliveira M., Siebert U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Animals in the North and Baltic Sea: Preliminary Results; Proceedings of the from the 50th Annual IAAAM Conference; Durban, South Africa. 18–22 May 2019.
McMillan E.A., Nguyen L.-H.T., Hiott L.M., Sharma P., Jackson C.R., Frye J.G., Chen C.-Y. Genomic Comparison of Conjugative Plasmids from Salmonella enterica and Escherichia coli Encoding Beta-Lactamases and Capable of Mobilizing Kanamycin Resistance Col-like Plasmids. Microorganisms. 2021;9:2205. doi: 10.3390/microorganisms9112205. PubMed DOI PMC
Poole K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol. 2011;2:65. doi: 10.3389/fmicb.2011.00065. PubMed DOI PMC
Faisal A.J., Salman H.A. Determination of Semen Quality and Antibacterial Susceptibility Pattern of Bacteria Isolated from Semen of Iraqi Subjects. Microbiol. Biotechnol. Lett. 2021;49:587–593. doi: 10.48022/mbl.2108.08006. DOI
Salman H.A., Abdulmohsen A.M., Falih M.N., Romi Z.M. Detection of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhi isolated from Iraqi subjects. Vet. World. 2021;14:1922–1928. doi: 10.14202/vetworld.2021.1922-1928. PubMed DOI PMC
Goularte K.L., Voloski F.L.S., Redú J.F.M., Ferreira C.E.R., Vieira A.D., Duval E.H., Mondadori R.G., Lucia T., Jr. Antibiotic resistance in microorganisms isolated in a bull semen stud. Reprod. Domest. Anim. 2020;55:318–324. doi: 10.1111/rda.13621. PubMed DOI
Bresciani C., Cabassi C.S., Morini G., Taddei S., Bigliardi E., Di Lanni F., Sabboni A., Parmigiani E. Boar semen bacterial contamination in Italy and antibiotic efficacy in a modified extender. Ital. J. Anim. Sci. 2014;13:3082. doi: 10.4081/ijas.2014.3082. DOI
Kaur A., Sharma P., Capalash N. Curcumin alleviates persistence of Acinetobacter baumannii against colistin. Sci. Rep. 2018;8:11029. doi: 10.1038/s41598-018-29291-z. PubMed DOI PMC
Gülen D., Şafak B., Erdal B., Günaydın B. Curcumin-meropenem synergy in carbapenem resistant Klebsiella pneumoniae curcumin-meropenem synergy. Iran. J. Microbiol. 2021;13:345–351. doi: 10.18502/ijm.v13i3.6397. PubMed DOI PMC
Yuan Y., Liu Q., Huang Y., Qi M., Yan H., Li W., Zhuang H. Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices. Molecules. 2022;27:7136. doi: 10.3390/molecules27207136. PubMed DOI PMC
Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE. 2015;10:e0121313. doi: 10.1371/journal.pone.0121313. PubMed DOI PMC
Dai C., Lin J., Li H., Shen Z., Wang Y., Velkov T., Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants. 2022;11:459. doi: 10.3390/antiox11030459. PubMed DOI PMC
Gholami M., Zeighami H., Bikas R., Heidari A., Rafiee F., Haghi F. Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of Pseudomonas aeruginosa PAO1. AMB Express. 2020;10:111. doi: 10.1186/s13568-020-01045-z. PubMed DOI PMC
Haukvik T., Bruzell E., Kristensen S., Tønnesen H.H. Photokilling of bacteria by curcumin in different aqueous preparations. Studies on curcumin and curcuminoids XXXVII. Die Pharmazie. 2009;64:666–673. PubMed
Moghaddam K., Iranshahi M., Yazdi M., Shahverdi A. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int. J. Green Pharm. 2009;3:141–143.
Mun S.H., Kim S.B., Kong R., Choi J.G., Kim Y.C., Shin D.W., Kang O.H., Kwon D.Y. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014;19:18283–18295. doi: 10.3390/molecules191118283. PubMed DOI PMC
Ďuračka M., Halenár M., Tvrdá E. In vitro effects of selected biologically active compounds on rabbit spermatozoa motility behaviour. J. Microbiol. Biotech. Food Sci. 2017;6:1290–1294. doi: 10.15414/jmbfs.2017.6.6.1290-1294. DOI
Marathe S.A., Ray S., Chakravortty D. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model. PLoS ONE. 2010;5:e11511. doi: 10.1371/journal.pone.0011511. PubMed DOI PMC