Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34163688
PubMed Central
PMC8179441
DOI
10.1039/d0sc06470j
PII: d0sc06470j
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The nature of plasmon interaction with organic molecules is a subject of fierce discussion about thermal and non-thermal effects. Despite the abundance of physical methods for evaluating the plasmonic effects, chemical insight has not been reported yet. In this contribution, we propose a chemical insight into the plasmon effect on reaction kinetics using alkoxyamines as an organic probe through their homolysis, leading to the generation of nitroxide radicals. Alkoxyamines (TEMPO- and SG1-substituted) with well-studied homolysis behavior are covalently attached to spherical Au nanoparticles. We evaluate the kinetic parameters of homolysis of alkoxyamines attached on a plasmon-active surface under heating and irradiation at a wavelength of plasmon resonance. The estimation of kinetic parameters from experiments with different probes (Au-TEMPO, Au-SG1, Au-SG1-TEMPO) allows revealing the apparent differences associated with the non-thermal contribution of plasmon activation. Moreover, our findings underline the dependency of kinetic parameters on the structure of organic molecules, which highlights the necessity to consider the nature of organic transformations and molecular structure in plasmon catalysis.
Department of Solid State Engineering University of Chemistry and Technology Prague Czech Republic
N D Zelinsky Institute of Organic Chemistry Leninsky Prospect 47 Moscow 119991 Russia
See more in PubMed
Zhang X. Ke X. Yao J. J. Mater. Chem. A. 2018;6:1941. doi: 10.1039/C7TA10375A. DOI
Linic S. Aslam U. Boerigter C. Morabito M. Nat. Mater. 2015;14:567. doi: 10.1038/nmat4281. PubMed DOI
Zhan C. Chen X. J. Yi J. Li J. F. Wu D. Y. Tian Z. Q. Nat. Rev. Chem. 2018;2:216. doi: 10.1038/s41570-018-0031-9. DOI
Shin H. H. Koo J. J. Lee K. S. Kim Z. H. Appl. Mater. Today. 2019;16:112. doi: 10.1016/j.apmt.2019.04.018. DOI
Cushing S. K. Wu N. J. Phys. Chem. Lett. 2016;7:666. doi: 10.1021/acs.jpclett.5b02393. PubMed DOI
Meng X. Liu L. Ouyang S. Xu H. Wang D. Zhao N. Ye J. Adv. Mater. 2016;28:6781. doi: 10.1002/adma.201600305. PubMed DOI
Yang Q. Xu Q. Yu S.-H. Jiang H.-L. Angew. Chem., Int. Ed. 2016;55:3685. doi: 10.1002/anie.201510655. PubMed DOI
Wen M. Takakura S. Fuku K. Mori K. Yamashita H. Catal. Today. 2015;242:381. doi: 10.1016/j.cattod.2014.05.019. DOI
Guselnikova O. Postnikov P. Chehimi M. M. Kalachyovaa Y. Svorcik V. Lyutakov O. Langmuir. 2019;35(6):2023. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI
Sarhan R. M. Koopman W. Schuetz R. Schmid T. Liebig F. Koetz J. Bargheer M. Sci. Rep. 2019;9:1. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC
Sivan Y. Un I. W. Dubi Y. Chem. Sci. 2019;19:45.
Zhou L. Swearer D. F. Zhang C. Robatjazi H. Zhao H. Henderson L. Dong L. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2018;362:69. doi: 10.1126/science.aat6967. PubMed DOI
Sivan Y. Baraban J. Un I. W. Dubi Y. Science. 2019;364:eaaw9367. doi: 10.1126/science.aaw9367. PubMed DOI
Zhou L. Swearer D. F. Robatjazi H. Alabastri A. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2019:364. PubMed
Baumberg J. J. Faraday Discuss. 2019:501–511. doi: 10.1039/C9FD00027E. PubMed DOI
Sivan Y. Un I. W. Dubi Y. Faraday Discuss. 2019:215–233. doi: 10.1039/C8FD00147B. PubMed DOI
Dubi Y. Sivan Y. Light: Sci. Appl. 2019;8:1. doi: 10.1038/s41377-018-0109-7. PubMed DOI PMC
Zhang X. Li X. Reish M. E. Zhang D. Su N. Q. Gutiérrez Y. Moreno F. Yang W. Everitt H. O. Liu J. Nano Lett. 2018;18:1714. doi: 10.1021/acs.nanolett.7b04776. PubMed DOI
Kazuma E. Jung J. Ueba H. Trenary M. Kim Y. Science. 2018;360:521. doi: 10.1126/science.aao0872. PubMed DOI
Sivan Y. Un I. W. Dubi Y. Faraday Discuss. 2019:215–233. doi: 10.1039/C8FD00147B. PubMed DOI
Jain P. K. J. Phys. Chem. C. 2019;123:24347. doi: 10.1021/acs.jpcc.9b08143. PubMed DOI
Hartland G. V. Besteiro L. V. Johns P. Govorov A. O. ACS Energy Lett. 2017;2:1641. doi: 10.1021/acsenergylett.7b00333. DOI
Guo J. Zhang Y. Shi L. Zhu Y. Mideksa M. F. Hou K. Zhao W. Wang D. Zhao M. Zhang X. Lv J. Zhang J. Wang X. Tang Z. J. Am. Chem. Soc. 2017;139:17964. doi: 10.1021/jacs.7b08903. PubMed DOI
Yang Q. Xu Q. Yu S.-H. Jiang H.-L. Angew. Chem., Int. Ed. 2016;55:3685. doi: 10.1002/anie.201510655. PubMed DOI
Jain P. S. Chem. Sci. 2020;11:9022. doi: 10.1039/D0SC02914A. PubMed DOI PMC
Li Z. Gao Y. Zhang L. Fang Y. Wang P. Nanoscale. 2018;10:18720. doi: 10.1039/C8NR06102E. PubMed DOI
Keller E. L. Frontiera R. R. ACS Nano. 2018;12(6):5848. doi: 10.1021/acsnano.8b01809. PubMed DOI
Kookhaee H. Tesema T. E. Habteyes T. G. J. Phys. Chem. C. 2020;124(41):22711. doi: 10.1021/acs.jpcc.0c07479. PubMed DOI
Chen T. Tong F. Enderlein J. Zheng Z. Nano Lett. 2020;20(5):3326. doi: 10.1021/acs.nanolett.0c00206. PubMed DOI
Koopman W. Sarhan R. M. Stete F. Schmitt C. N. Z. Bargheer M. Nanoscale. 2020;12(48):24411–24418. doi: 10.1039/D0NR06039A. PubMed DOI
Guselnikova O. Marque S. R. A. Tretyakov E. V. Mares D. Jerabek V. Audran G. Joly J. P. Trusova M. Svorcik V. Lyutakov O. Postnikov P. J. Mater. Chem. A. 2019;7:12414. doi: 10.1039/C9TA01630A. DOI
Nicolas J. Guillaneuf Y. Lefay C. Bertin D. Gigmes D. Charleux B. Nitroxide-mediated polymerisation. Prog. Polym. Sci. 2013;38:63. doi: 10.1016/j.progpolymsci.2012.06.002. DOI
Bertin D. Gigmes D. Marque S. R. A. Tordo P. Chem. Soc. Rev. 2011;40:2189. doi: 10.1039/C0CS00110D. PubMed DOI
Encyclopedia of Radicals in Chemistry, Biology and Materials, ed. C. Chatgilialoglu and A. Studer, John Wiley & Sons, Ltd, Chichester, UK, 2012
Bagryanskaya E. G. Marque S. R. A. RSC Polym. Chem. Ser. 2016:45–113. PubMed PMC
V Edeleva M. Marque S. R. A. Bagryanskaya E. G. Russ. Chem. Rev. 2018;87:328. doi: 10.1070/RCR4765. DOI
Edeleva M. Audran G. Marque S. Bagryanskaya E. Materials. 2019;12:688. doi: 10.3390/ma12050688. PubMed DOI PMC
Audran G. Brémond P. Joly J. P. Marque S. R. A. Yamasaki T. Org. Biomol. Chem. 2016;14:3574. doi: 10.1039/C6OB00384B. PubMed DOI
Shewchuk D. M. McDermott M. T. Langmuir. 2009;25(8):4556. doi: 10.1021/la8040083. PubMed DOI
Civit L. Fragoso A. O'Sullivan C. K. Electrochem. Commun. 2010;12(8):1045. doi: 10.1016/j.elecom.2010.05.020. DOI
Laurentius L. Stoyanov S. R. Gusarov S. Kovalenko A. Du R. Lopinski G. P. McDermott M. T. ACS Nano. 2011;5:4219. doi: 10.1021/nn201110r. PubMed DOI
Marsh D. J. Magn. Reson. 2008;190(1):60. doi: 10.1016/j.jmr.2007.10.004. PubMed DOI
Kimling J. Maier M. Okenve B. Kotaidis V. Ballot H. Plech A. J. Phys. Chem. B. 2006;110:15700. doi: 10.1021/jp061667w. PubMed DOI
Guselnikova O. Postnikov P. Marque S. R. A. Švorčík V. Lyutakov O. Sens. Actuators, B. 2019;300:127015. doi: 10.1016/j.snb.2019.127015. DOI
Romero I. Aizpurua J. Bryant G. W. García De Abajo F. J. Opt. Express. 2006;14:9988. doi: 10.1364/OE.14.009988. PubMed DOI
Schumacher L. Jose J. Janoschka D. Dreher P. Davis T. J. Ligges M. Li R. Mo M. Park S. Shen X. Weathersby S. Yang J. Wang X. Meyer Zu Heringdorf F. Sokolowski-Tinten K. Schlücker S. J. Phys. Chem. C. 2019;123:13181. doi: 10.1021/acs.jpcc.9b01007. DOI
Marque S. Fischer H. Baier E. Studer A. J. Org. Chem. 2001;66:1146. doi: 10.1021/jo001190z. PubMed DOI
Audran G. Bagryanskaya E. Bagryanskaya I. Brémond P. Edeleva M. Marque S. R. A. Parkhomenko D. Tretyakov E. Zhivetyeva S. Inorg. Chem. Front. 2016;3:1464. doi: 10.1039/C6QI00277C. DOI
Miliutina E. Guselnikova O. Soldatova N. Bainova P. Elashnikov R. Fitl P. Kurten T. Yusubov M. Švorčík V. Valiev R. R. Chehimi M. Lyutakov O. Postnikov P. J. Phys. Chem. Lett. 2020;11:5770. doi: 10.1021/acs.jpclett.0c01350. PubMed DOI