• This record comes from PubMed

Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe

. 2021 Jan 25 ; 12 (11) : 4154-4161. [epub] 20210125

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

The nature of plasmon interaction with organic molecules is a subject of fierce discussion about thermal and non-thermal effects. Despite the abundance of physical methods for evaluating the plasmonic effects, chemical insight has not been reported yet. In this contribution, we propose a chemical insight into the plasmon effect on reaction kinetics using alkoxyamines as an organic probe through their homolysis, leading to the generation of nitroxide radicals. Alkoxyamines (TEMPO- and SG1-substituted) with well-studied homolysis behavior are covalently attached to spherical Au nanoparticles. We evaluate the kinetic parameters of homolysis of alkoxyamines attached on a plasmon-active surface under heating and irradiation at a wavelength of plasmon resonance. The estimation of kinetic parameters from experiments with different probes (Au-TEMPO, Au-SG1, Au-SG1-TEMPO) allows revealing the apparent differences associated with the non-thermal contribution of plasmon activation. Moreover, our findings underline the dependency of kinetic parameters on the structure of organic molecules, which highlights the necessity to consider the nature of organic transformations and molecular structure in plasmon catalysis.

See more in PubMed

Zhang X. Ke X. Yao J. J. Mater. Chem. A. 2018;6:1941. doi: 10.1039/C7TA10375A. DOI

Linic S. Aslam U. Boerigter C. Morabito M. Nat. Mater. 2015;14:567. doi: 10.1038/nmat4281. PubMed DOI

Zhan C. Chen X. J. Yi J. Li J. F. Wu D. Y. Tian Z. Q. Nat. Rev. Chem. 2018;2:216. doi: 10.1038/s41570-018-0031-9. DOI

Shin H. H. Koo J. J. Lee K. S. Kim Z. H. Appl. Mater. Today. 2019;16:112. doi: 10.1016/j.apmt.2019.04.018. DOI

Cushing S. K. Wu N. J. Phys. Chem. Lett. 2016;7:666. doi: 10.1021/acs.jpclett.5b02393. PubMed DOI

Meng X. Liu L. Ouyang S. Xu H. Wang D. Zhao N. Ye J. Adv. Mater. 2016;28:6781. doi: 10.1002/adma.201600305. PubMed DOI

Yang Q. Xu Q. Yu S.-H. Jiang H.-L. Angew. Chem., Int. Ed. 2016;55:3685. doi: 10.1002/anie.201510655. PubMed DOI

Wen M. Takakura S. Fuku K. Mori K. Yamashita H. Catal. Today. 2015;242:381. doi: 10.1016/j.cattod.2014.05.019. DOI

Guselnikova O. Postnikov P. Chehimi M. M. Kalachyovaa Y. Svorcik V. Lyutakov O. Langmuir. 2019;35(6):2023. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI

Sarhan R. M. Koopman W. Schuetz R. Schmid T. Liebig F. Koetz J. Bargheer M. Sci. Rep. 2019;9:1. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC

Sivan Y. Un I. W. Dubi Y. Chem. Sci. 2019;19:45.

Zhou L. Swearer D. F. Zhang C. Robatjazi H. Zhao H. Henderson L. Dong L. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2018;362:69. doi: 10.1126/science.aat6967. PubMed DOI

Sivan Y. Baraban J. Un I. W. Dubi Y. Science. 2019;364:eaaw9367. doi: 10.1126/science.aaw9367. PubMed DOI

Zhou L. Swearer D. F. Robatjazi H. Alabastri A. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2019:364. PubMed

Baumberg J. J. Faraday Discuss. 2019:501–511. doi: 10.1039/C9FD00027E. PubMed DOI

Sivan Y. Un I. W. Dubi Y. Faraday Discuss. 2019:215–233. doi: 10.1039/C8FD00147B. PubMed DOI

Dubi Y. Sivan Y. Light: Sci. Appl. 2019;8:1. doi: 10.1038/s41377-018-0109-7. PubMed DOI PMC

Zhang X. Li X. Reish M. E. Zhang D. Su N. Q. Gutiérrez Y. Moreno F. Yang W. Everitt H. O. Liu J. Nano Lett. 2018;18:1714. doi: 10.1021/acs.nanolett.7b04776. PubMed DOI

Kazuma E. Jung J. Ueba H. Trenary M. Kim Y. Science. 2018;360:521. doi: 10.1126/science.aao0872. PubMed DOI

Sivan Y. Un I. W. Dubi Y. Faraday Discuss. 2019:215–233. doi: 10.1039/C8FD00147B. PubMed DOI

Jain P. K. J. Phys. Chem. C. 2019;123:24347. doi: 10.1021/acs.jpcc.9b08143. PubMed DOI

Hartland G. V. Besteiro L. V. Johns P. Govorov A. O. ACS Energy Lett. 2017;2:1641. doi: 10.1021/acsenergylett.7b00333. DOI

Guo J. Zhang Y. Shi L. Zhu Y. Mideksa M. F. Hou K. Zhao W. Wang D. Zhao M. Zhang X. Lv J. Zhang J. Wang X. Tang Z. J. Am. Chem. Soc. 2017;139:17964. doi: 10.1021/jacs.7b08903. PubMed DOI

Yang Q. Xu Q. Yu S.-H. Jiang H.-L. Angew. Chem., Int. Ed. 2016;55:3685. doi: 10.1002/anie.201510655. PubMed DOI

Jain P. S. Chem. Sci. 2020;11:9022. doi: 10.1039/D0SC02914A. PubMed DOI PMC

Li Z. Gao Y. Zhang L. Fang Y. Wang P. Nanoscale. 2018;10:18720. doi: 10.1039/C8NR06102E. PubMed DOI

Keller E. L. Frontiera R. R. ACS Nano. 2018;12(6):5848. doi: 10.1021/acsnano.8b01809. PubMed DOI

Kookhaee H. Tesema T. E. Habteyes T. G. J. Phys. Chem. C. 2020;124(41):22711. doi: 10.1021/acs.jpcc.0c07479. PubMed DOI

Chen T. Tong F. Enderlein J. Zheng Z. Nano Lett. 2020;20(5):3326. doi: 10.1021/acs.nanolett.0c00206. PubMed DOI

Koopman W. Sarhan R. M. Stete F. Schmitt C. N. Z. Bargheer M. Nanoscale. 2020;12(48):24411–24418. doi: 10.1039/D0NR06039A. PubMed DOI

Guselnikova O. Marque S. R. A. Tretyakov E. V. Mares D. Jerabek V. Audran G. Joly J. P. Trusova M. Svorcik V. Lyutakov O. Postnikov P. J. Mater. Chem. A. 2019;7:12414. doi: 10.1039/C9TA01630A. DOI

Nicolas J. Guillaneuf Y. Lefay C. Bertin D. Gigmes D. Charleux B. Nitroxide-mediated polymerisation. Prog. Polym. Sci. 2013;38:63. doi: 10.1016/j.progpolymsci.2012.06.002. DOI

Bertin D. Gigmes D. Marque S. R. A. Tordo P. Chem. Soc. Rev. 2011;40:2189. doi: 10.1039/C0CS00110D. PubMed DOI

Encyclopedia of Radicals in Chemistry, Biology and Materials, ed. C. Chatgilialoglu and A. Studer, John Wiley & Sons, Ltd, Chichester, UK, 2012

Bagryanskaya E. G. Marque S. R. A. RSC Polym. Chem. Ser. 2016:45–113. PubMed PMC

V Edeleva M. Marque S. R. A. Bagryanskaya E. G. Russ. Chem. Rev. 2018;87:328. doi: 10.1070/RCR4765. DOI

Edeleva M. Audran G. Marque S. Bagryanskaya E. Materials. 2019;12:688. doi: 10.3390/ma12050688. PubMed DOI PMC

Audran G. Brémond P. Joly J. P. Marque S. R. A. Yamasaki T. Org. Biomol. Chem. 2016;14:3574. doi: 10.1039/C6OB00384B. PubMed DOI

Shewchuk D. M. McDermott M. T. Langmuir. 2009;25(8):4556. doi: 10.1021/la8040083. PubMed DOI

Civit L. Fragoso A. O'Sullivan C. K. Electrochem. Commun. 2010;12(8):1045. doi: 10.1016/j.elecom.2010.05.020. DOI

Laurentius L. Stoyanov S. R. Gusarov S. Kovalenko A. Du R. Lopinski G. P. McDermott M. T. ACS Nano. 2011;5:4219. doi: 10.1021/nn201110r. PubMed DOI

Marsh D. J. Magn. Reson. 2008;190(1):60. doi: 10.1016/j.jmr.2007.10.004. PubMed DOI

Kimling J. Maier M. Okenve B. Kotaidis V. Ballot H. Plech A. J. Phys. Chem. B. 2006;110:15700. doi: 10.1021/jp061667w. PubMed DOI

Guselnikova O. Postnikov P. Marque S. R. A. Švorčík V. Lyutakov O. Sens. Actuators, B. 2019;300:127015. doi: 10.1016/j.snb.2019.127015. DOI

Romero I. Aizpurua J. Bryant G. W. García De Abajo F. J. Opt. Express. 2006;14:9988. doi: 10.1364/OE.14.009988. PubMed DOI

Schumacher L. Jose J. Janoschka D. Dreher P. Davis T. J. Ligges M. Li R. Mo M. Park S. Shen X. Weathersby S. Yang J. Wang X. Meyer Zu Heringdorf F. Sokolowski-Tinten K. Schlücker S. J. Phys. Chem. C. 2019;123:13181. doi: 10.1021/acs.jpcc.9b01007. DOI

Marque S. Fischer H. Baier E. Studer A. J. Org. Chem. 2001;66:1146. doi: 10.1021/jo001190z. PubMed DOI

Audran G. Bagryanskaya E. Bagryanskaya I. Brémond P. Edeleva M. Marque S. R. A. Parkhomenko D. Tretyakov E. Zhivetyeva S. Inorg. Chem. Front. 2016;3:1464. doi: 10.1039/C6QI00277C. DOI

Miliutina E. Guselnikova O. Soldatova N. Bainova P. Elashnikov R. Fitl P. Kurten T. Yusubov M. Švorčík V. Valiev R. R. Chehimi M. Lyutakov O. Postnikov P. J. Phys. Chem. Lett. 2020;11:5770. doi: 10.1021/acs.jpclett.0c01350. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...