Revising Model Reactions in Plasmonic Chemistry: From Nitrothiophenol Coupling to Alkoxyamine Homolysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40636733
PubMed Central
PMC12235594
DOI
10.1021/acscatal.5c01129
Knihovny.cz E-zdroje
- Klíčová slova
- alkoxyamine, azo coupling, photocatalysis, plasmon catalysis, surface plasmon resonance,
- Publikační typ
- časopisecké články MeSH
The progress in plasmonic chemistry requires research on energy transfer, mechanisms, and materials discovery. In this pursuit, there are >3000 papers applying the azo coupling of 4-nitrothiophenol (PNTP) as a model reaction. Here, we challenge the status of this reaction as a model due to experimental evidence of thiol desorption during plasmon excitation using laser irradiation monitored by X-ray photoelectron spectroscopy (XPS) as an analytic technique. The azo coupling was performed on commonly used Au nanoparticles (NPs) coated with PNTP and confirmed by Raman spectroscopy and XPS. Changes in the N 1s and S 2p spectral regions indicated the cleavage of the Au-S bond, accompanied by thiol oxidation. Based on XPS data, we hypothesized a chemical pathway and a kinetic model that surpasses previously used simple models in complexity, making it challenging to draw reliable conclusions. The dissociation of the Au-S bond is triggered by plasmonic heating, supported by experimentally and theoretically determined local temperatures exceeding the thiol desorption temperature. The azo coupling reaction does not fit within the requirements of the model one, which should be simple and proceed with structurally evidenced products. As one of the alternative reactions, we suggest alkoxyamine homolysis tracked by electron paramagnetic resonance spectroscopy because of known products and the simple kinetic model. Applications of suitable model reactions accelerate discoveries in plasmon catalysis.
Aix Marseille University Avenue Escadrille Normandie Niemen Marseille 13397 Cedex 20 France
College of Integrative Studies Abdullah Al Salem University Block 3 Khaldiya 72303 Kuwait
Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
Institute of Applied Physics Vienna University of Technology Vienna 1040 Austria
Zobrazit více v PubMed
Abouelela M. M., Kawamura G., Matsuda A.. A Review on Plasmonic Nanoparticle-Semiconductor Photocatalysts for Water Splitting. J. Clean. Prod. 2021;294:126200. doi: 10.1016/j.jclepro.2021.126200. DOI
Zhang P., Wang T., Gong J.. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. Adv. Mater. 2015;27(36):5328–5342. doi: 10.1002/adma.201500888. PubMed DOI
Warren S. C., Thimsen E.. Plasmonic Solar Water Splitting. Energy Environ. Sci. 2012;5(1):5133–5146. doi: 10.1039/C1EE02875H. DOI
Koopman W., Titov E., Sarhan R. M., Gaebel T., Schürmann R., Mostafa A., Kogikoski S., Milosavljević A. R., Stete F., Liebig F., Schmitt C. N. Z., Koetz J., Bald I., Saalfrank P., Bargheer M.. The Role of Structural Flexibility in Plasmon-Driven Coupling Reactions: Kinetic Limitations in the Dimerization of Nitro-Benzenes. Adv. Mater. Interfaces. 2021;8(22):2101344. doi: 10.1002/admi.202101344. DOI
Kazuma E., Kim Y.. Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angew. Chem., Int. Ed. 2019;58(15):4800–4808. doi: 10.1002/anie.201811234. PubMed DOI
Sheng S., Ji Y., Yan X., Wei H., Luo Y., Xu H.. Azo-Dimerization Mechanisms of p-Aminothiophenol and p-Nitrothiophenol Molecules on Plasmonic Metal Surfaces Revealed by Tip-/Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C. 2020;124(21):11586–11594. doi: 10.1021/acs.jpcc.0c01367. DOI
Schürmann R., Ebel K., Nicolas C., Milosavljević A. R., Bald I.. Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol. J. Phys. Chem. Lett. 2019;10(11):3153–3158. doi: 10.1021/acs.jpclett.9b00848. PubMed DOI PMC
Votkina D., Petunin P., Miliutina E., Trelin A., Lyutakov O., Svorcik V., Audran G., Havot J., Valiev R., Valiulina L. I., Joly J.-P., Yamauchi Y., Mokkath J. H., Henzie J., Guselnikova O., Marque S. R. A., Postnikov P.. Uncovering the Role of Chemical and Electronic Structures in Plasmonic Catalysis: The Case of Homolysis of Alkoxyamines. ACS Catal. 2023;13(5):2822–2833. doi: 10.1021/acscatal.2c04685. DOI
Guselnikova O., Audran G., Joly J.-P., Trelin A., Tretyakov E. V., Svorcik V., Lyutakov O., Marque S. R. A., Postnikov P.. Establishing Plasmon Contribution to Chemical Reactions: Alkoxyamines as a Thermal Probe. Chem. Sci. 2021;12(11):4154–4161. doi: 10.1039/D0SC06470J. PubMed DOI PMC
Semyonov O., Kogolev D., Mamontov G., Kolobova E., Trelin A., Yusubov M. S., Guselnikova O., Postnikov P. S.. Synergetic Effect of UiO-66 and Plasmonic AgNPs on PET Waste Support towards Degradation of Nerve Agent Simulant. Chem. Eng. J. 2022;431:133450. doi: 10.1016/j.cej.2021.133450. DOI
Votkina D., Trelin A., Semin V., Lyutakov O., Svorcik V., Petunin P., Audran G., Marque S. R. A., Guselnikova O., Postnikov P.. Size-Dependent Plasmonic Activity of AuNPs for the Rational Design of Catalysts for Organic Reactions. Catal. Sci. Technol. 2024;14(13):3707–3718. doi: 10.1039/D4CY00084F. DOI
Fang Y., Li Y., Xu H., Sun M.. Ascertaining p, p′-Dimercaptoazobenzene Produced from p-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles. Langmuir. 2010;26(11):7737–7746. doi: 10.1021/la904479q. PubMed DOI
Huang Y.-F., Zhu H.-P., Liu G.-K., Wu D.-Y., Ren B., Tian Z.-Q.. When the Signal Is Not from the Original Molecule To Be Detected: Chemical Transformation of Para-Aminothiophenol on Ag during the SERS Measurement. J. Am. Chem. Soc. 2010;132(27):9244–9246. doi: 10.1021/ja101107z. PubMed DOI
Dong B., Fang Y., Xia L., Xu H., Sun M.. Is 4-Nitrobenzenethiol Converted to p,p′-Dimercaptoazobenzene or 4-Aminothiophenol by Surface Photochemistry Reaction? J. Raman Spectrosc. 2011;42(6):1205–1206. doi: 10.1002/jrs.2937. DOI
Sun M., Huang Y., Xia L., Chen X., Xu H.. The PH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to p, p ′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. J. Phys. Chem. C. 2011;115(19):9629–9636. doi: 10.1021/jp201002v. DOI
Xu J.-F., Luo S.-Y., Liu G.-K.. Different Behaviors in the Transformation of PATP Adsorbed on Ag or Au Nanoparticles Investigated by Surface-Enhanced Raman SpectroscopyA Study of the Effects from Laser Energy and Annealing. Spectrochim. Acta, Part A. 2015;143:35–39. doi: 10.1016/j.saa.2015.02.039. PubMed DOI
Dong B., Fang Y., Chen X., Xu H., Sun M.. Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Films. Langmuir. 2011;27(17):10677–10682. doi: 10.1021/la2018538. PubMed DOI
Ye J., Hutchison J. A., Uji-i H., Hofkens J., Lagae L., Maes G., Borghs G., Van Dorpe P.. Excitation Wavelength Dependent Surface Enhanced Raman Scattering of 4-Aminothiophenol on Gold Nanorings. Nanoscale. 2012;4(5):1606. doi: 10.1039/c2nr11805j. PubMed DOI
Kim K., Choi J. Y., Shin K. S.. Surface-Enhanced Raman Scattering of 4-Nitrobenzenethiol and 4-Aminobenzenethiol on Silver in Icy Environments at Liquid Nitrogen Temperature. J. Phys. Chem. C. 2014;118(21):11397–11403. doi: 10.1021/jp5015115. DOI
Lopes D. S., Vono L. L. R., Miranda E. V., Ando R. A., Corio P.. Inhibition of P-Nitrothiophenol Catalytic Hydrogenation on Ag-Containing AgAu/Pd/TiO2 Plasmonic Catalysts Probed in Situ by SERS. ChemCatChem. 2022;14(5):1–7. doi: 10.1002/cctc.202101943. DOI
Wang J. L., Ando R. A., Camargo P. H. C.. Investigating the Plasmon-Mediated Catalytic Activity of AgAu Nanoparticles as a Function of Composition: Are Two Metals Better than One? ACS Catal. 2014;4(11):3815–3819. doi: 10.1021/cs501189m. DOI
Xu J.-F., Liu G.-K.. Laser-Induced Chemical Transformation of PATP Adsorbed on Ag Nanoparticles by Surface-Enhanced Raman SpectroscopyA Study of the Effects from Surface Morphology of Substrate and Surface Coverage of PATP. Spectrochim. Acta, Part A. 2015;138:873–877. doi: 10.1016/j.saa.2014.10.083. PubMed DOI
Xie W., Walkenfort B., Schlücker S.. Label-Free SERS Monitoring of Chemical Reactions Catalyzed by Small Gold Nanoparticles Using 3D Plasmonic Superstructures. J. Am. Chem. Soc. 2013;135(5):1657–1660. doi: 10.1021/ja309074a. PubMed DOI
Vericat C., Vela M. E., Benitez G., Carro P., Salvarezza R. C.. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System. Chem. Soc. Rev. 2010;39(5):1805–1834. doi: 10.1039/b907301a. PubMed DOI
Vericat C., Vela M. E., Corthey G., Pensa E., Cortés E., Fonticelli M. H., Ibañez F., Benitez G. E., Carro P., Salvarezza R. C.. Self-Assembled Monolayers of Thiolates on Metals: A Review Article on Sulfur-Metal Chemistry and Surface Structures. RSC Adv. 2014;4(53):27730–27754. doi: 10.1039/C4RA04659E. DOI
Chechik, V. ; Stirling, C. J. M. . Gold-Thiol Self-Assembled Monolayers. In PATAI’S Chemistry of Functional Groups; Rappoport, 2009.
Kondoh H., Kodama C., Sumida H., Nozoye H.. Molecular Processes of Adsorption and Desorption of Alkanethiol Monolayers on Au(111) J. Chem. Phys. 1999;111(3):1175–1184. doi: 10.1063/1.479302. DOI
Delamarche E., Michel B., Biebuyck H. A., Gerber C.. Golden Interfaces: The Surface of Self-Assembled Monolayers. Adv. Mater. 1996;8(9):719–729. doi: 10.1002/adma.19960080903. DOI
Asyuda A., Das S., Zharnikov M.. Thermal Stability of Alkanethiolate and Aromatic Thiolate Self-Assembled Monolayers on Au(111): An X-Ray Photoelectron Spectroscopy Study. J. Phys. Chem. C. 2021;125(39):21754–21763. doi: 10.1021/acs.jpcc.1c06984. DOI
Xue Y., Li X., Li H., Zhang W.. Quantifying Thiol-Gold Interactions towards the Efficient Strength Control. Nat. Commun. 2014;5:4348. doi: 10.1038/ncomms5348. PubMed DOI
Lewis M., Tarlov M., Carron K.. Study of the Photooxidation Process of Self-Assembled Alkanethiol Monolayers. J. Am. Chem. Soc. 1995;117(37):9574–9575. doi: 10.1021/ja00142a030. DOI
Simoncelli S., Li Y., Cortés E., Maier S. A.. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics. ACS Nano. 2018;12(3):2184–2192. doi: 10.1021/acsnano.7b08563. PubMed DOI
Jain P. K., Qian W., El-Sayed M. A.. Ultrafast Cooling of Photoexcited Electrons in Gold Nanoparticle–Thiolated DNA Conjugates Involves the Dissociation of the Gold–Thiol Bond. J. Am. Chem. Soc. 2006;128(7):2426–2433. doi: 10.1021/ja056769z. PubMed DOI
Zhang Q., Blom D. A., Wang H.. Nanoporosity-Enhanced Catalysis on Subwavelength Au Nanoparticles: A Plasmon-Enhanced Spectroscopic Study. Chem. Mater. 2014;26(17):5131–5142. doi: 10.1021/cm502508d. DOI
Villarreal E., Li G. G., Zhang Q., Fu X., Wang H.. Nanoscale Surface Curvature Effects on Ligand–Nanoparticle Interactions: A Plasmon-Enhanced Spectroscopic Study of Thiolated Ligand Adsorption, Desorption, and Exchange on Gold Nanoparticles. Nano Lett. 2017;17(7):4443–4452. doi: 10.1021/acs.nanolett.7b01593. PubMed DOI
Mahmoud M. A.. Reducing the Photocatalysis Induced by Hot Electrons of Plasmonic Nanoparticles Due to Tradeoff of Photothermal Heating. Phys. Chem. Chem. Phys. 2017;19(47):32016–32023. doi: 10.1039/C7CP03855K. PubMed DOI
Turkevich J., Stevenson P. C., Hillier J.. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951;11:55. doi: 10.1039/df9511100055. DOI
Thomas M., Mühlig S., Deckert-Gaudig T., Rockstuhl C., Deckert V., Marquetand P.. Distinguishing Chemical and Electromagnetic Enhancement in Surface-enhanced Raman Spectra: The Case of Para -nitrothiophenol. J. Raman Spectrosc. 2013;44(11):1497–1505. doi: 10.1002/jrs.4377. DOI
Skadtchenko B. O., Aroca R.. Surface-Enhanced Raman Scattering of p-Nitrothiophenol. Spectrochim. Acta, Part A. 2001;57(5):1009–1016. doi: 10.1016/S1386-1425(00)00415-7. PubMed DOI
Adenier A., Cabet-Deliry E., Chaussé A., Griveau S., Mercier F., Pinson J., Vautrin-Ul C.. Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction. Chem. Mater. 2005;17(3):491–501. doi: 10.1021/cm0490625. DOI
Médard C., Morin M.. Chemisorption of Aromatic Thiols onto a Glassy Carbon Surface. J. Electroanal. Chem. 2009;632(1–2):120–126. doi: 10.1016/j.jelechem.2009.04.005. DOI
Sarhan R. M., Koopman W., Schuetz R., Schmid T., Liebig F., Koetz J., Bargheer M.. The Importance of Plasmonic Heating for the Plasmon-Driven Photodimerization of 4-Nitrothiophenol. Sci. Rep. 2019;9(1):3060. doi: 10.1038/s41598-019-38627-2. PubMed DOI PMC
Sun M., Xu H.. A Novel Application of Plasmonics: Plasmon-Driven Surface-Catalyzed Reactions. Small. 2012;8(18):2777–2786. doi: 10.1002/smll.201200572. PubMed DOI
Zhou B., Ou W., Shen J., Zhao C., Zhong J., Du P., Bian H., Li P., Yang L., Lu J., Li Y. Y.. Controlling Plasmon-Aided Reduction of p-Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catal. 2021;11(24):14898–14905. doi: 10.1021/acscatal.1c04091. DOI
Zhang Q., Wang H.. Mechanistic Insights on Plasmon-Driven Photocatalytic Oxidative Coupling of Thiophenol Derivatives: Evidence for Steady-State Photoactivated Oxygen. J. Phys. Chem. C. 2018;122(10):5686–5697. doi: 10.1021/acs.jpcc.8b00660. DOI
Koopman W., Sarhan R. M., Stete F., Schmitt C. N. Z., Bargheer M.. Decoding the Kinetic Limitations of Plasmon Catalysis: The Case of 4-Nitrothiophenol Dimerization. Nanoscale. 2020;12(48):24411–24418. doi: 10.1039/D0NR06039A. PubMed DOI
Zhang Z., Kneipp J.. Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy. Anal. Chem. 2018;90(15):9199–9205. doi: 10.1021/acs.analchem.8b01701. PubMed DOI
Zhang Z., Merk V., Hermanns A., Unger W. E. S., Kneipp J.. Role of Metal Cations in Plasmon-Catalyzed Oxidation: A Case Study of p -Aminothiophenol Dimerization. ACS Catal. 2017;7(11):7803–7809. doi: 10.1021/acscatal.7b02700. DOI
Nyamekye C. K. A., Weibel S. C., Smith E. A.. Directional Raman Scattering Spectra of Metal–sulfur Bonds at Smooth Gold and Silver Substrates. J. Raman Spectrosc. 2021;52(7):1246–1255. doi: 10.1002/jrs.6124. DOI
Varnholt B., Oulevey P., Luber S., Kumara C., Dass A., Bürgi T.. Structural Information on the Au–S Interface of Thiolate-Protected Gold Clusters: A Raman Spectroscopy Study. J. Phys. Chem. C. 2014;118(18):9604–9611. doi: 10.1021/jp502453q. DOI
Krishna D. N. G., Philip J.. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022;12:100332. doi: 10.1016/j.apsadv.2022.100332. DOI
Hofmann, S. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer Series in Surface Sciences; Springer: Berlin, Heidelberg, 2013; Vol. 49.
Castner D. G., Hinds K., Grainger D. W.. X-Ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces. Langmuir. 1996;12(21):5083–5086. doi: 10.1021/la960465w. DOI
Munir A., Haq T. ul., Qurashi A., Rehman H. ur., Ul-Hamid A., Hussain I.. Ultrasmall Ni/NiO Nanoclusters on Thiol-Functionalized and -Exfoliated Graphene Oxide Nanosheets for Durable Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2019;2(1):363–371. doi: 10.1021/acsaem.8b01375. DOI
van Schrojenstein Lantman E. M., Deckert-Gaudig T., Mank A. J. G., Deckert V., Weckhuysen B. M.. Catalytic Processes Monitored at the Nanoscale with Tip-Enhanced Raman Spectroscopy. Nat. Nanotechnol. 2012;7(9):583–586. doi: 10.1038/nnano.2012.131. PubMed DOI
Cai Z. F., Merino J. P., Fang W., Kumar N., Richardson J. O., De Feyter S., Zenobi R.. Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions Using Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2022;144(1):538–546. doi: 10.1021/jacs.1c11263. PubMed DOI
Qiu L., Pang G. A., Zheng G., Bauer D., Wieland K., Haisch C.. Kinetic and Mechanistic Investigation of the Photocatalyzed Surface Reduction of 4-Nitrothiophenol Observed on a Silver Plasmonic Film via Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2020;12(18):21133–21142. doi: 10.1021/acsami.0c05977. PubMed DOI
Boerigter C., Aslam U., Linic S.. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. ACS Nano. 2016;10(6):6108–6115. doi: 10.1021/acsnano.6b01846. PubMed DOI
Chu J., Miao P., Han X., Du Y., Wang X., Song B., Xu P.. Ultrafast Surface-Plasmon-Induced Photodimerization of p-Aminothiophenol on Ag/TiO 2 Nanoarrays. ChemCatChem. 2016;8(10):1819–1824. doi: 10.1002/cctc.201600172. DOI
Sarhan R. M., Koopman W., Pudell J., Stete F., Rössle M., Herzog M., Schmitt C. N. Z., Liebig F., Koetz J., Bargheer M.. Scaling Up Nanoplasmon Catalysis: The Role of Heat Dissipation. J. Phys. Chem. C. 2019;123(14):9352–9357. doi: 10.1021/acs.jpcc.8b12574. DOI
Golubev A. A., Khlebtsov B. N., Rodriguez R. D., Chen Y., Zahn D. R. T.. Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol. J. Phys. Chem. C. 2018;122(10):5657–5663. doi: 10.1021/acs.jpcc.7b12101. DOI
Pensa E., Cortés E., Corthey G., Carro P., Vericat C., Fonticelli M. H., Benítez G., Rubert A. A., Salvarezza R. C.. The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Acc. Chem. Res. 2012;45(8):1183–1192. doi: 10.1021/ar200260p. PubMed DOI
Un I. W., Sivan Y.. Parametric Study of Temperature Distribution in Plasmon-Assisted Photocatalysis. Nanoscale. 2020;12(34):17821–17832. doi: 10.1039/D0NR03897K. PubMed DOI
Elias R. C., Linic S.. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis. J. Am. Chem. Soc. 2022;144(43):19990–19998. doi: 10.1021/jacs.2c08561. PubMed DOI
Kong T., Kang B., Wang W., Deckert-Gaudig T., Zhang Z., Deckert V.. Thermal-Effect Dominated Plasmonic Catalysis on Silver Nanoislands. Nanoscale. 2024;16(22):10745–10750. doi: 10.1039/D4NR00049H. PubMed DOI
Chen K., Wang H.. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions. Nano Lett. 2023;23(7):2870–2876. doi: 10.1021/acs.nanolett.3c00195. PubMed DOI
Cortés E., Besteiro L. V., Alabastri A., Baldi A., Tagliabue G., Demetriadou A., Narang P.. Challenges in Plasmonic Catalysis. ACS Nano. 2020;14(12):16202–16219. doi: 10.1021/acsnano.0c08773. PubMed DOI
da Silva A. G. M., Rodrigues T. S., Wang J., Camargo P. H. C.. Plasmonic Catalysis with Designer Nanoparticles. Chem. Commun. 2022;58(13):2055–2074. doi: 10.1039/D1CC03779J. PubMed DOI
Bainova P., Joly J.-P., Urbanova M., Votkina D., Erzina M., Vokata B., Trelin A., Fitl P., Audran G., Vanthuyne N., Vinklarek J., Svorcik V., Postnikov P., Marque S. R. A., Lyutakov O.. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catal. 2023;13(19):12859–12867. doi: 10.1021/acscatal.3c02958. DOI
Guselnikova O., Marque S. R. A., Tretyakov E. V., Mares D., Jerabek V., Audran G., Joly J.-P., Trusova M., Svorcik V., Lyutakov O., Postnikov P.. Unprecedented Plasmon-Induced Nitroxide-Mediated Polymerization (PI-NMP): A Method for Preparation of Functional Surfaces. J. Mater. Chem. A. 2019;7(20):12414–12419. doi: 10.1039/C9TA01630A. DOI
Sigma-Aldrich. N-tert-Butyl-N-(2-methyl-1-phenylpropyl)-O-(1-phenylethyl)hydroxylamine, 2024. https://www.sigmaaldrich.com/RU/en/product/aldrich/700703.
Chemieliva. N-Tert-Butyl-N-(1-Diethoxyphosphoryl-2,2-Dimethylpropyl) -O-(Benzyl)Hydroxylamine, 2024. https://www.chemieliva.com/new_content.html?casno=224575-61-5.
Atomax Chemicals. 2-Methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)aminoxy]propionitrile], 2024. http://en.atomaxchem.com/288583-05-1.html.
Kazuma E., Jung J., Ueba H., Trenary M., Kim Y.. Real-Space and Real-Time Observation of a Plasmon-Induced Chemical Reaction of a Single Molecule. Science. 2018;360(6388):521–526. doi: 10.1126/science.aao0872. PubMed DOI
Sun M., Zhang Z., Zheng H., Xu H.. In-Situ Plasmon-Driven Chemical Reactions Revealed by High Vacuum Tip-Enhanced Raman Spectroscopy. Sci. Rep. 2012;2(1):647. doi: 10.1038/srep00647. PubMed DOI PMC
Yan L., Wang F., Meng S.. Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. ACS Nano. 2016;10(5):5452–5458. doi: 10.1021/acsnano.6b01840. PubMed DOI
Baffou G., Bordacchini I., Baldi A., Quidant R.. Simple Experimental Procedures to Distinguish Photothermal from Hot-Carrier Processes in Plasmonics. Light: Sci. Appl. 2020;9:108. doi: 10.1038/s41377-020-00345-0. PubMed DOI PMC
Christopher P., Xin H., Linic S.. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011;3(6):467–472. doi: 10.1038/nchem.1032. PubMed DOI
Plasmon Catalysis Data Fitting, 2025. https://curvefitapp-plasmon.streamlit.app.
Encyclopedia of Radicals in Chemistry, Biology and Materials; Chatgilialoglu, C. ; Studer, A. , Eds.; Wiley, 2012. 10.1002/9781119953678. DOI
Bertin D., Gigmes D., Marque S. R. A., Tordo P.. Polar, Steric, and Stabilization Effects in Alkoxyamines C–ON Bond Homolysis: A Multiparameter Analysis. Macromolecules. 2005;38(7):2638–2650. doi: 10.1021/ma050004u. DOI
Chen K., Wang H.. Metal–Adsorbate Interactions Modulate Plasmonic Reactivity of Chemisorbed Nitrophenyl Derivatives. J. Phys. Chem. C. 2023;127(8):4104–4114. doi: 10.1021/acs.jpcc.3c00005. DOI
Alessandri I.. 4-Aminothiophenol Photodimerization Without Plasmons. Angew. Chem., Int. Ed. 2022;61(28):e202205013. doi: 10.1002/anie.202205013. PubMed DOI PMC
Xu S., Guo L., Sun Q., Wang Z. L.. Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO 3 Heterostructures. Adv. Funct. Mater. 2019;29(13):1808737. doi: 10.1002/adfm.201808737. DOI
Paul K. K., Giri P. K.. Role of Surface Plasmons and Hot Electrons on the Multi-Step Photocatalytic Decay by Defect Enriched Ag@TiO 2 Nanorods under Visible Light. J. Phys. Chem. C. 2017;121(36):20016–20030. doi: 10.1021/acs.jpcc.7b05328. DOI
Salmistraro M., Schwartzberg A., Bao W., Depero L. E., Weber-Bargioni A., Cabrini S., Alessandri I.. Triggering and Monitoring Plasmon-Enhanced Reactions by Optical Nanoantennas Coupled to Photocatalytic Beads. Small. 2013;9(19):3301–3307. doi: 10.1002/smll.201300211. PubMed DOI
Yin Z., Wang Y., Song C., Zheng L., Ma N., Liu X., Li S., Lin L., Li M., Xu Y., Li W., Hu G., Fang Z., Ma D.. Hybrid Au–Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018;140(3):864–867. doi: 10.1021/jacs.7b11293. PubMed DOI
Erzina M., Guselnikova O., Miliutina E., Trelin A., Postnikov P., Svorcik V., Lyutakov O.. Plasmon-Assisted Transfer Hydrogenation: Kinetic Control of Reaction Chemoselectivity through a Light Illumination Mode. J. Phys. Chem. C. 2021;125(19):10318–10325. doi: 10.1021/acs.jpcc.0c11535. DOI
Tong F., Liang X., Ma F., Bao X., Wang Z., Liu Y., Wang P., Cheng H., Dai Y., Huang B., Zheng Z.. Plasmon-Mediated Nitrobenzene Hydrogenation with Formate as the Hydrogen Donor Studied at a Single-Particle Level. ACS Catal. 2021;11(7):3801–3809. doi: 10.1021/acscatal.1c00164. DOI