Signalling
Dotaz
Zobrazit nápovědu
INTRODUCTION: The use of signal dogs for cancer detection is not yet routinely performed,but dogs and their powerful olfactory system have proven to be a unique and valuable tool for many lineages and are beginning to be incorporated into medical practice. This method has great advantages; the dog can detect a tumour in the human body already in preclinical stages, when the patient has no symptoms yet. The identification of cancer biomarkers to enable early diagnosis is a need for many types of cancer, whose prognosis is strongly dependent on the stage of the disease. However, this method also has its various pitfalls that must be taken into account. AIM: The aim of the study was to identify and highlight the factors that affect the level of detection accuracy, but also the conditions associated with olfactometric diagnosis. METHODS: The study included 48 dogs and 48 handlers, that were part of the training between 2016 and 2023.All those who started olfactometry training and remained in training for at least one year were included in the study. The dogs ranged in age from 8 months to 12 years and were of different races and sexes. After long-term observation, a qualitative analysis was performed and factors that may play a role in the early detection of the disease were listed. RESULTS: The results of the search for the different factors have been compiled into two groups, focussing on the actual handling of the patient biological sample from collection, processing, storage until transport, preparation of the sample,and detection. Focus on the actual work and behaviour of the dog and handler. CONCLUSION: There are many factors; however, it is worth addressing them because the canine sense of smell is one of the possible uses as a diagnostic method.
- Publikační typ
- časopisecké články MeSH
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules. Here, we used a PROTAC (Proteolysis TArgeting Chimeras) approach to develop a highly selective degrader AH078 (37) targeting CK1δ and CK1ε with excellent selectivity over the highly related CK1α isoform. The developed PROTAC, AH078 (37) selectively degraded CK1δ and CK1ε with a DC50 of 200 nM. Characterization of AH078 (37) revealed a VHL and Ubiquitin-dependent degradation mechanism. Thus, AH078 (37) represents a versatile chemical tool to study CK1δ and CK1ε function in cellular systems.
- MeSH
- inhibitory proteinkinas * farmakologie chemie metabolismus MeSH
- kaseinkinasa Idelta * antagonisté a inhibitory metabolismus MeSH
- kaseinkinasa Iepsilon * antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- objevování léků MeSH
- proteolýza * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
- MeSH
- cirkadiánní rytmus MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * patologie terapie MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.
- MeSH
- antivirové látky * farmakologie chemie MeSH
- farmakoterapie COVID-19 MeSH
- HEK293 buňky MeSH
- inhibitory proteas farmakologie chemie MeSH
- koronavirové proteasy 3C * metabolismus antagonisté a inhibitory chemie genetika MeSH
- lidé MeSH
- mutace MeSH
- objevování léků * metody MeSH
- proteolýza MeSH
- SARS-CoV-2 * enzymologie účinky léků metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Presensitized patients with circulating donor-specific antibodies (DSAs) before transplantation are at risk for antibody-mediated rejection (AMR). Peritransplant desensitization mitigates but does not eliminate the alloimmune response. We examined the possibility that subthreshold AMR activity undetected by histology could be operating in some early biopsies. METHODS: Transcriptome of kidney allograft biopsies performed within the first month in presensitized patients (DSA+) who had received desensitization and did not develop active/probable AMR by histology (R-) was compared with biopsies showing active/probable AMR (R+/DSA+). As negative controls, biopsies without rejection by histology in patients without DSA at transplantation were used (R-/DSA-). RNA sequencing from biopsies selected from the biobank was used in cohort 1 (n = 32) and microarray, including the molecular microscope (Molecular Microscope Diagnostic System [MMDx]) algorithm, in recent cohort 2 (n = 30). RESULTS: The transcriptome of R-/DSA+ was similar to R+/DSA+ as these groups differed in 14 transcripts only. Contrarily, large differences were found between both DSA+ groups and negative controls. Fast gene set enrichment analyses showed upregulation of the immune system in both DSA+ groups (gene ontology terms: adaptive immune response, humoral immune response, antigen receptor-mediated signaling, and B-cell receptor signaling or complement activation) when compared with negative controls. MMDx assessment in cohort 2 classified 50% of R-/DSA+ samples as AMR and found no differences in AMR molecular scores between R+ and R- DSA+ groups. In imlifidase desensitization, MMDx series showed a gradual increase in AMR scores over time. CONCLUSIONS: Presensitized kidney transplant recipients exhibited frequent molecular calls of AMR in biopsy-based transcript diagnostics despite desensitization therapy and negative histology.
- Publikační typ
- časopisecké články MeSH
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- kolorektální nádory * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- oprava DNA genetika MeSH
- rodokmen MeSH
- sekvenování exomu * metody MeSH
- senioři MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.SEQUOIA (ClinicalTrials.gov identifier: NCT03336333) is a phase III, randomized, open-label trial that compared the oral Bruton tyrosine kinase inhibitor zanubrutinib to bendamustine plus rituximab (BR) in treatment-naïve patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). The initial prespecified analysis (median follow-up, 26.2 months) and subsequent analysis (43.7 months) found superior progression-free survival (PFS; the primary end point) in patients who received zanubrutinib compared with BR. At a median follow-up of 61.2 months, median PFS was not reached in zanubrutinib-treated patients; median PFS was 44.1 months in BR-treated patients (hazard ratio [HR], 0.29; one-sided P = .0001). Prolonged PFS was seen with zanubrutinib versus BR in patients with mutated immunoglobulin heavy-chain variable region (IGHV) genes (HR, 0.40; one-sided P = .0003) and unmutated IGHV genes (HR, 0.21 [95% CI, 0.14 to 0.33]; one-sided P < .0001). Median overall survival (OS) was not reached in either treatment arm; estimated 60-month OS rates were 85.8% and 85.0% in zanubrutinib- and BR-treated patients, respectively. No new safety signals were detected. Adverse events were as expected with zanubrutinib; rate of atrial fibrillation was 7.1%. At a median follow-up of 61.2 months, the results supported the initial SEQUOIA findings and suggested that zanubrutinib was a favorable treatment option for untreated patients with CLL/SLL.
- MeSH
- bendamustin hydrochlorid * aplikace a dávkování terapeutické užití MeSH
- chronická lymfatická leukemie * farmakoterapie mortalita MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- následné studie MeSH
- piperidiny terapeutické užití aplikace a dávkování škodlivé účinky MeSH
- protokoly protinádorové kombinované chemoterapie * terapeutické užití škodlivé účinky MeSH
- pyrazoly * terapeutické užití aplikace a dávkování škodlivé účinky MeSH
- pyrimidiny * terapeutické užití aplikace a dávkování škodlivé účinky MeSH
- rituximab * aplikace a dávkování terapeutické užití škodlivé účinky MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
Due to methodological reasons, the X-chromosome has not been featured in the major genome-wide association studies on Alzheimer's Disease (AD). To address this and better characterize the genetic landscape of AD, we performed an in-depth X-Chromosome-Wide Association Study (XWAS) in 115,841 AD cases or AD proxy cases, including 52,214 clinically-diagnosed AD cases, and 613,671 controls. We considered three approaches to account for the different X-chromosome inactivation (XCI) states in females, i.e. random XCI, skewed XCI, and escape XCI. We did not detect any genome-wide significant signals (P ≤ 5 × 10-8) but identified seven X-chromosome-wide significant loci (P ≤ 1.6 × 10-6). The index variants were common for the Xp22.32, FRMPD4, DMD and Xq25 loci, and rare for the WNK3, PJA1, and DACH2 loci. Overall, this well-powered XWAS found no genetic risk factors for AD on the non-pseudoautosomal region of the X-chromosome, but it identified suggestive signals warranting further investigations.
- MeSH
- Alzheimerova nemoc * genetika MeSH
- celogenomová asociační studie metody MeSH
- genetická predispozice k nemoci genetika MeSH
- inaktivace chromozomu X genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- lidské chromozomy X * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- imunoterapie * metody MeSH
- infekce papilomavirem imunologie virologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mutace * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové mikroprostředí * imunologie MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování exomu MeSH
- únik nádoru z imunitní kontroly genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH