A new human-based metaheuristic algorithm for solving optimization problems based on preschool education

. 2023 Dec 06 ; 13 (1) : 21472. [epub] 20231206

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38052945

Grantová podpora
2210/2023-2024 Univerzita Hradec Králové

Odkazy

PubMed 38052945
PubMed Central PMC10697988
DOI 10.1038/s41598-023-48462-1
PII: 10.1038/s41598-023-48462-1
Knihovny.cz E-zdroje

In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration-exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.

Zobrazit více v PubMed

Ray T, Liew K-M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003;7(4):386–396.

Kaidi W, Khishe M, Mohammadi M. Dynamic levy flight chimp optimization. Knowl.-Based Syst. 2022;235:107625.

Kvasov DE, Mukhametzhanov MS. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl. Math. Comput. 2018;318:245–259.

Mirjalili S. The ant lion optimizer. Adv. Eng. Softw. 2015;83:80–98.

Rakotonirainy RG, van Vuuren JH. Improved metaheuristics for the two-dimensional strip packing problem. Appl. Soft Comput. 2020;92:106268.

Wang J-S, Li S-X. An improved grey wolf optimizer based on differential evolution and elimination mechanism. Sci. Rep. 2019;9(1):1–21. PubMed PMC

Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9(2):685–692.

Rizk-Allah RM, Hassanien AE, Snášel V. A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem. Energy. 2022;254:124340.

Rizk-Allah RM. A quantum-based sine cosine algorithm for solving general systems of nonlinear equations. Artif. Intell. Rev. 2021;54(5):3939–3990.

Rizk-Allah RM. An improved sine–cosine algorithm based on orthogonal parallel information for global optimization. Soft Comput. 2019;23:7135–7161.

Yuan Y, Yang Q, Ren J, Fan J, Shen Q, Wang X, Zhao Y. Learning-imitation strategy-assisted alpine skiing optimization for the boom of offshore drilling platform. Ocean Eng. 2023;278:114317.

Yuan Y, Shen Q, Xi W, Wang S, Ren J, Yu J, Yang Q. Multidisciplinary design optimization of dynamic positioning system for semi-submersible platform. Ocean Eng. 2023;285:115426.

Yuan Y, Mu X, Shao X, Ren J, Zhao Y, Wang Z. Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm. Appl. Comput. 2022;123:108947.

Yuan Y, Wang S, Lv L, Song X. An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems. Eng. Comput. 2021;38(5):2228–2251.

Yuan Y, Lv L, Wang S, Song X. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer. Front. Mech. Eng. 2020;15:406–416.

Nadimi-Shahraki MH, Asghari Varzaneh Z, Zamani H, Mirjalili S. Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl. Sci. 2022;13(1):564.

Nadimi-Shahraki MH, Zamani H, Mirjalili S. Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Comput. Biol. Med. 2022;148:105858. PubMed

Fatahi A, Nadimi-Shahraki MH, Zamani H. An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: A COVID-19 case study. J. Bionic Eng. 2023;1:1–21.

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1(1):67–82.

Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996;26(1):29–41. PubMed

Kennedy, J., & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks, 1942–1948 (IEEE, 1998).

Karaboga, D. & Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science, 789–798 (Springer, 2007).

Yang, X.-S. Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms, 169–178 (Springer, 2009).

Jiang Y, Wu Q, Zhu S, Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026.

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61.

Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377.

Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541.

Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457.

Trojovský P, Dehghani M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior. Sci. Rep. 2023;13:8775. PubMed PMC

Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67.

Yuan Y, Ren J, Wang S, Wang Z, Mu X, Zhao W. Alpine skiing optimization: A new bio-inspired optimization algorithm. Adv. Eng. Softw. 2022;170:103158.

Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158.

Zamani H, Nadimi-Shahraki MH, Gandomi AH. CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput. 2019;85:105583.

Zamani H, Nadimi-Shahraki MH, Gandomi AH. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021;104:104314.

Zamani H, Nadimi-Shahraki MH, Gandomi AH. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022;392:114616.

Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach. Learn. 1988;3(2):95–99.

Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11(4):341–359.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–680. PubMed

Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179(13):2232–2248.

Hsiao, Y. T., Chuang, C., L., Jiang, J. A. & Chien, C. C. A Novel Optimization Algorithm: Space Gravitational Optimization. In IEEE International Conference on Systems, Man and Cybernetics (SMC2008), 2323–2328 (IEEE, 2005).

Dash T, Sahu PK. Gradient gravitational search: An efficient metaheuristic algorithm for global optimization. J. Comput. Chem. 2015;36(14):1060–1068. PubMed

Kripta, M. M. L., & Kripta. R. Big Crunch Optimization Method. In. International Conference on Engineering Optimization (EngOpt 2008), 1–5 (E-Papers Serviços Ed. Ltda., 2008).

Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016;26:8–22.

Rahkar-Farshi T, Behjat-Jamal S. A multimodal firefly optimization algorithm based on Coulomb’s law. Int. J. Adv. Comput. Sci. Appl. 2016;7(5):134–141.

Dehghani M, Montazeri Z, Dhiman G, Malik O, Morales-Menendez R, Ramirez-Mendoza RA, Dehghani A, Guerrero JM, Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10(18):6173.

Formato RA. Central force optimization: A new metaheuristic with applications in applied electromagnetics. Progress Electromagn. Res. 2007;77:425–491.

Zhao W, Wang L, Zhang Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019;163:283–304.

Wei Z, Huang C, Wang X, Han T, Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109.

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166.

Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020;191:105190.

Bansal P, Gill SS. Lightning attachment procedure optimization algorithm for optimal design of digital FIR band stop. Measur.: Sens. 2022;24:100590.

Tahani M, Babayan N. Flow regime algorithm (FRA): A physics-based meta-heuristics algorithm. Knowl. Inf. Syst. 2019;60(2):1001–1038.

Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27(2):495–513.

Glover FW. Tabu search—part I. ORSA J. Comput. 1989;1(3):190–206. doi: 10.1287/ijoc.1.3.190. DOI

Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43(3):303–315.

Zhang J, Xiao M, Gao L, Pan Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Modell. 2018;63:464–490.

Moosavi SHS, Bardsiri VK. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019;86:165–181.

Mousavirad SJ, Ebrahimpour-Komleh H. Human mental search: A new population-based metaheuristic optimization algorithm. Appl. Intell. 2017;47(3):850–887.

Dehghani M, Montazeri Z, Dehghani A, Ramirez-Mendoza RA, Samet H, Guerrero JM, Dhiman G. MLO: Multi leader optimizer. Int. J. Intell. Eng. Syst. 2020;13:364–373.

Dehghani M, Mardaneh M, Malik OP. FOA: 'Following' optimization algorithm for solving power engineering optimization problems. J. Oper. Autom. Power Eng. 2020;8(1):57–64.

Dehghani M, Trojovský P. Teamwork optimization algorithm: A new optimization approach for function minimization/maximization. Sensors. 2021;21(13):4567. PubMed PMC

Ayyarao TL, et al. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073–25105.

Trojovská E, Dehghani M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022;12:14861. PubMed PMC

Yuan Y, Shen Q, Wang S, Ren J, Yang D, Yang Q, Fan J, Mu X. Coronavirus mask protection algorithm: A new bio-inspired optimization algorithm and its applications. J. Bion. Eng. 2023;20:1747–1765. PubMed PMC

Matoušová I, Trojovský P, Dehghani M, Trojovská E, Kostra J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023;3(1):10312. PubMed PMC

Mooney CG. Theories of Childhood: An Introduction to Dewey, Montessori Piaget, and Vygotsky. Redleaf Press; 2013.

Katz, L. G. & McClellan, D. E. Fostering Children's Social Competence: The Teacher's Role. (Early Childhood Education Series) (National Association for the Education of Young Children, Washington D.C., 1997).

Zigler E, Taussig C, Black K. Early childhood intervention: A promising preventative for juvenile delinquency. Am. Psychol. 1992;47(8):997–1006. PubMed

Gardner DEM, Cass JE. The Rôle of the Teacher in the Infant and Nursery School. Pergamon Press; 2014.

Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3(2):82–102.

Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y. & Suganthan, P. N. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technology Report, Nanyang Technological University, Singapore (2016).

Wilcoxon F. Individual comparisons by ranking methods. Biomet. Bull. 1945;1:80–83.

Das, S. & Suganthan, P. N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Jadavpur University, Nanyang Technological University, Kolkata, 341–359 (2010).

Kannan B, Kramer SN. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116(2):405–411.

Mezura-Montes, E. & Coello, C. A. C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Mexican international conference on artificial intelligence, 652–662 (Springer, 2005).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...