• This record comes from PubMed

OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems

. 2023 Oct 01 ; 8 (6) : . [epub] 20231001

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant University of Calgary
Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant

This study proposes the One-to-One-Based Optimizer (OOBO), a new optimization technique for solving optimization problems in various scientific areas. The key idea in designing the suggested OOBO is to effectively use the knowledge of all members in the process of updating the algorithm population while preventing the algorithm from relying on specific members of the population. We use a one-to-one correspondence between the two sets of population members and the members selected as guides to increase the involvement of all population members in the update process. Each population member is chosen just once as a guide and is only utilized to update another member of the population in this one-to-one interaction. The proposed OOBO's performance in optimization is evaluated with fifty-two objective functions, encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results highlight the remarkable capacity of OOBO to strike a balance between exploration and exploitation within the problem-solving space during the search process. The quality of the optimization results achieved using the proposed OOBO is evaluated by comparing them to eight well-known algorithms. The simulation findings show that OOBO outperforms the other algorithms in addressing optimization problems and can give more acceptable quasi-optimal solutions. Also, the implementation of OOBO in six engineering problems shows the effectiveness of the proposed approach in solving real-world optimization applications.

See more in PubMed

Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI

Nocedal J., Wright S. Numerical Optimization. Springer Science & Business Media; Berlin, Germany: 2006.

Talbi E.-G. Metaheuristics: From Design to Implementation. Volume 74 John Wiley & Sons; Hoboken, NJ, USA: 2009.

Gu Q., Wang Q., Li X., Li X. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems. Knowl.-Based Syst. 2021;223:107049. doi: 10.1016/j.knosys.2021.107049. DOI

Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI

Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC

Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI

Singh P., Dhiman G., Kaur A. A quantum approach for time series data based on graph and Schrödinger equations methods. Mod. Phys. Lett. A. 2018;33:1850208. doi: 10.1142/S0217732318502085. DOI

Kennedy J., Eberhart R. Particle Swarm Optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948.

Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B. 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI

Yang X.S., Gandomi A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012;29:464–483. doi: 10.1108/02644401211235834. DOI

Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Dehghani M., Trojovský P., Malik O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:121. doi: 10.3390/biomimetics8010121. PubMed DOI PMC

Dhiman G., Kumar V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017;114:48–70. doi: 10.1016/j.advengsoft.2017.05.014. DOI

Dehghani M., Hubálovský Š., Trojovský P. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. IEEE Access. 2021;9:162059–162080. doi: 10.1109/ACCESS.2021.3133286. DOI

Jiang Y., Wu Q., Zhu S., Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. DOI

Neshat M., Sepidnam G., Sargolzaei M., Toosi A.N. Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014;42:965–997. doi: 10.1007/s10462-012-9342-2. DOI

Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI

Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. DOI

Saremi S., Mirjalili S., Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017;105:30–47. doi: 10.1016/j.advengsoft.2017.01.004. DOI

Shiqin Y., Jianjun J., Guangxing Y. A Dolphin Partner Optimization. Global Congress on Intelligent Systems, IEEE; Piscataway, NJ, USA: 2009. pp. 124–128.

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Oftadeh R., Mahjoob M., Shariatpanahi M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 2010;60:2087–2098. doi: 10.1016/j.camwa.2010.07.049. DOI

Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI

Dhiman G., Singh K.K., Soni M., Nagar A., Dehghani M., Slowik A., Kaur A., Sharma A., Houssein E.H., Cengiz K. MOSOA: A new multi-objective seagull optimization algorithm. Expert Syst. Appl. 2020;167:114150. doi: 10.1016/j.eswa.2020.114150. DOI

Trojovský P., Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:149. doi: 10.3390/biomimetics8020149. PubMed DOI PMC

Jia H., Peng X., Lang C. Remora optimization algorithm. Expert Syst. Appl. 2021;185:115665. doi: 10.1016/j.eswa.2021.115665. DOI

Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI

Zhao W., Wang L., Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022;388:114194. doi: 10.1016/j.cma.2021.114194. DOI

Połap D., Woźniak M. Red fox optimization algorithm. Expert Syst. Appl. 2021;166:114107. doi: 10.1016/j.eswa.2020.114107. DOI

Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI

Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC

Dehghani M., Hubálovský Š., Trojovský P. Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm. Sensors. 2021;21:5214. doi: 10.3390/s21155214. PubMed DOI PMC

Dehghani M., Trojovský P. Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems. Sensors. 2022;22:1795. doi: 10.3390/s22051795. PubMed DOI PMC

Givi H., Dehghani M., Montazeri Z., Morales-Menendez R., Ramirez-Mendoza R.A., Nouri N. GBUO: “The Good, the Bad, and the Ugly” Optimizer. Appl. Sci. 2021;11:2042. doi: 10.3390/app11052042. DOI

Dehghani M., Montazeri Z., Hubálovský Š. GMBO: Group Mean-Based Optimizer for Solving Various Optimization Problems. Mathematics. 2021;9:1190. doi: 10.3390/math9111190. DOI

Hashim F.A., Hussien A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022;242:108320. doi: 10.1016/j.knosys.2022.108320. DOI

Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI

Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI

Shah-Hosseini H. Principal Components Analysis by the Galaxy-Based Search Algorithm: A novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 2011;6:132–140.

Du H., Wu X., Zhuang J. Small-World Optimization Algorithm for Function Optimization; Proceedings of the International Conference on Natural Computation; Xi’an, China. 24–28 September 2006; pp. 264–273.

Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI

Formato R.A. Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) Springer; Berlin, Germany: 2008. Central force optimization: A new nature inspired computational framework for multidimensional search and optimization; pp. 221–238.

Kaveh A., Khayatazad M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012;112:283–294. doi: 10.1016/j.compstruc.2012.09.003. DOI

Tahani M., Babayan N. Flow Regime Algorithm (FRA): A physics-based meta-heuristics algorithm. Knowl. Inf. Syst. 2019;60:1001–1038. doi: 10.1007/s10115-018-1253-3. DOI

Moghaddam F.F., Moghaddam R.F., Cheriet M. Curved space optimization: A random search based on general relativity theory. arXiv. 20121208.2214

Kaveh A., Khanzadi M., Moghaddam M.R. Billiards-Inspired Optimization Algorithm; A New Meta-Heuristic Method. Structures. 2020;27:1722–1739. doi: 10.1016/j.istruc.2020.07.058. DOI

Wei Z., Huang C., Wang X., Han T., Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI

Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI

Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI

Moscato P., Norman M.G. A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput. Transput. Appl. 1992;1:177–186.

Fogel L.J., Owens A.J., Walsh M.J. Artificial Intelligence through Simulated Evolution. John Wiley & Sons; Hoboken, NJ, USA: 1966.

Trojovská E., Dehghani M., Leiva V. Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering. Biomimetics. 2023;8:239. doi: 10.3390/biomimetics8020239. PubMed DOI PMC

Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI

Das S., Suganthan P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011;15:4–31. doi: 10.1109/TEVC.2010.2059031. DOI

Koza J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994;4:87–112. doi: 10.1007/BF00175355. DOI

Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. -Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI

Matoušová I., Trojovský P., Dehghani M., Trojovská E., Kostra J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023;13:10312. doi: 10.1038/s41598-023-37537-8. PubMed DOI PMC

Ghorbani N., Babaei E. Exchange market algorithm. Appl. Soft Comput. 2014;19:177–187.

Eita M., Fahmy M. Group counseling optimization. Appl. Soft Comput. 2014;22:585–604. doi: 10.1016/j.asoc.2014.03.043. DOI

Wang C., Zhang X., Niu Y., Gao S., Jiang J., Zhang Z., Yu P., Dong H. Dual-Population Social Group Optimization Algorithm Based on Human Social Group Behavior Law. IEEE Trans. Comput. Soc. Syst. 2022;10:166–177. doi: 10.1109/TCSS.2022.3141114. DOI

Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI

Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI

Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554. doi: 10.22266/ijies2021.0630.46. DOI

Montazeri Z., Niknam T., Aghaei J., Malik O.P., Dehghani M., Dhiman G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics. 2023;5:386. doi: 10.3390/biomimetics8050386. PubMed DOI PMC

Mohammad D., Zeinab M., Malik O.P., Givi H., Guerrero J.M. Shell Game Optimization: A Novel Game-Based Algorithm. Int. J. Intell. Eng. Syst. 2020;13:246–255.

Wang G.-G., Deb S., Cui Z. Monarch butterfly optimization. Neural Comput. Appl. 2019;31:1995–2014. doi: 10.1007/s00521-015-1923-y. DOI

Li S., Chen H., Wang M., Heidari A.A., Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020;111:300–323. doi: 10.1016/j.future.2020.03.055. DOI

Wang G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018;10:151–164. doi: 10.1007/s12293-016-0212-3. DOI

Yang Y., Chen H., Heidari A.A., Gandomi A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021;177:114864.

Ahmadianfar I., Heidari A.A., Gandomi A.H., Chu X., Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021;181:115079. doi: 10.1016/j.eswa.2021.115079. DOI

Tu J., Chen H., Wang M., Gandomi A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021;18:674–710. doi: 10.1007/s42235-021-0050-y. DOI

Ahmadianfar I., Heidari A.A., Noshadian S., Chen H., Gandomi A.H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 2022;195:116516. doi: 10.1016/j.eswa.2022.116516. DOI

Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. DOI

Su H., Zhao D., Heidari A.A., Liu L., Zhang X., Mafarja M., Chen H. RIME: A physics-based optimization. Neurocomputing. 2023;532:183–214. doi: 10.1016/j.neucom.2023.02.010. DOI

Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.

Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016

Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.

Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI

Golinski J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970;5:287–309. doi: 10.1016/0022-2569(70)90064-9. DOI

Mezura-Montes E., Coello C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms; Proceedings of the 4th Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; pp. 652–662.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...