Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2208/2021-2022
Faculty of Science, University of Hradec Kralove, Czech Republic
PubMed
34372450
PubMed Central
PMC8348201
DOI
10.3390/s21155214
PII: s21155214
Knihovny.cz E-zdroje
- Klíčová slova
- cat and mouse, optimization, optimization problem, population-based, stochastic,
- MeSH
- algoritmy * MeSH
- pohyb MeSH
- řešení problému MeSH
- teoretické modely * MeSH
- učení MeSH
- Publikační typ
- časopisecké články MeSH
Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.
Zobrazit více v PubMed
Dehghani M., Montazeri Z., Dehghani A., Ramirez-Mendoza R.A., Samet H., Guerrero J.M., Dhiman G. MLO: Multi leader optimizer. Int. J. Intell. Eng. Syst. 2020;13:364–373. doi: 10.22266/ijies2020.1231.32. DOI
Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl. Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI
Sadeghi A., Doumari S.A., Dehghani M., Montazeri Z., Trojovský P., Ashtiani H.J. A New “Good and Bad Groups-Based Optimizer” for Solving Various Optimization Problems. Appl. Sci. 2021;11:4382. doi: 10.3390/app11104382. DOI
Cavazzuti M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics. Springer; Berlin/Heidelberg, Germany: 2013. Deterministic Optimization; pp. 77–102.
Dhiman G., Kumar V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017;114:48–70. doi: 10.1016/j.advengsoft.2017.05.014. DOI
Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006;1:28–39. doi: 10.1109/CI-M.2006.248054. DOI
Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Kennedy J., Eberhart R. In Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, Australia. 27 November–1 December 1995; pp. 1942–1948.
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Rao R.V., Savsani V.J., Vakharia D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90 doi: 10.1016/j.engappai.2020.103541. DOI
Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC
Yang X., Suash D. Cuckoo Search via Lévy flights; Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC); Coimbatore, India. 9–11 December 2009; pp. 210–214.
Abualigah L., Yousri D., Elaziz M.A., Ewees A.A., Al-Qaness M.A., Gandomi A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. DOI
Yazdani M., Jolai F. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2016;3:24–36. doi: 10.1016/j.jcde.2015.06.003. DOI
Saremi S., Mirjalili S., Lewis A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017;105:30–47. doi: 10.1016/j.advengsoft.2017.01.004. DOI
Dhiman G., Kumar V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018;159:20–50. doi: 10.1016/j.knosys.2018.06.001. DOI
Chu S.-C., Tsai P.-W., Pan J.-S. Cat swarm optimization; Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence; Guilin, China. 7–11 August 2006; pp. 854–858.
Kallioras N.A., Lagaros N.D., Avtzis D.N. Pity beetle algorithm—A new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 2018;121:147–166. doi: 10.1016/j.advengsoft.2018.04.007. DOI
Jahani E., Chizari M. Tackling global optimization problems with a novel algorithm—Mouth Brooding Fish algorithm. Appl. Soft Comput. 2018;62:987–1002. doi: 10.1016/j.asoc.2017.09.035. DOI
Shadravan S., Naji H.R., Bardsiri V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019;80:20–34. doi: 10.1016/j.engappai.2019.01.001. DOI
Dehghani M., Mardaneh M., Malik O.P. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020;8:57–64.
Dehghani M., Montazeri Z., Dehghani A., Samet H., Sotelo C., Sotelo D., Ehsanifar A., Malik O.P., Guerrero J.M., Dhiman G., et al. DM: Dehghani Method for Modifying Optimization Algorithms. Appl. Sci. 2020;10:7683. doi: 10.3390/app10217683. DOI
Storn R., Price K.V. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI
Simon D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI
Huang G. Artificial infectious disease optimization: A SEIQR epidemic dynamic model-based function optimization algorithm. Swarm Evol. Comput. 2016;27:31–67. doi: 10.1016/j.swevo.2015.09.007. PubMed DOI PMC
Labbi Y., Ben Attous D., Gabbar H.A., Mahdad B., Zidan A. A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 2016;79:298–311. doi: 10.1016/j.ijepes.2016.01.028. DOI
Baykasoğlu A., Akpinar Ş. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems—Part 1: Unconstrained optimization. Appl. Soft Comput. 2017;56:520–540. doi: 10.1016/j.asoc.2015.10.036. DOI
Akyol S., Alatas B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2016;47:417–462. doi: 10.1007/s10462-016-9486-6. DOI
Salmani M.H., Eshghi K. A Metaheuristic Algorithm Based on Chemotherapy Science: CSA. J. Optim. 2017;2017 doi: 10.1155/2017/3082024. DOI
Cheraghalipour A., Hajiaghaei-Keshteli M., Paydar M.M. Tree Growth Algorithm (TGA): A novel approach for solving optimization problems. Eng. Appl. Artif. Intell. 2018;72:393–414. doi: 10.1016/j.engappai.2018.04.021. DOI
van Laarhoven P.J.M., Aarts E.H.L., editors. Simulated Annealing: Theory and Applications. Springer; Dordrecht, The Netherland: 1987. Simulated annealing; pp. 7–15.
Eskandar H., Sadollah A., Bahreininejad A., Hamdi M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Kaveh A., Bakhshpoori T. Water Evaporation Optimization: A novel physically inspired optimization algorithm. Comput. Struct. 2016;167:69–85. doi: 10.1016/j.compstruc.2016.01.008. DOI
Muthiah-Nakarajan V., Noel M.M. Galactic Swarm Optimization: A new global optimization metaheuristic inspired by galactic motion. Appl. Soft Comput. 2016;38:771–787. doi: 10.1016/j.asoc.2015.10.034. DOI
Dehghani M., Montazeri Z., Dehghani A., Seifi A. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke’s law; Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI); Tehran, Iran. 22 December 2017; pp. 210–214.
Zhang Q., Wang R., Yang J., Ding K., Li Y., Hu J. Collective decision optimization algorithm: A new heuristic optimization method. Neurocomputing. 2017;221:123–137. doi: 10.1016/j.neucom.2016.09.068. DOI
Vommi V.B., Vemula R. A very optimistic method of minimization (VOMMI) for unconstrained problems. Inf. Sci. 2018;454–455:255–274. doi: 10.1016/j.ins.2018.04.046. DOI
Dehghani M., Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2 doi: 10.1007/s42452-020-03511-6. DOI
Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI
Dehghani M., Montazeri Z., Malik O.P. DGO: Dice game optimizer. GAZI Univ. J. Sci. 2019;32:871–882. doi: 10.35378/gujs.484643. DOI
Dehghani M., Montazeri Z., Malik O.P., Dhiman G., Kumar V. BOSA: Binary orientation search algorithm. Int. J. Innov. Technol. Explor. Eng. 2019;9:5306–5310.
Dehghani M., Montazeri Z., Saremi S., Dehghani A., Malik O.P., Al-Haddad K., Guerrero J. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020;13:216–225. doi: 10.22266/ijies2020.0831.19. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Dehghani M., Montazeri Z., Givi H., Guerrero J.M., Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294. doi: 10.22266/ijies2020.1031.26. DOI
Dehghani M., Montazeri Z., Malik O., Givi H., Guerrero J. Shell Game Optimization: A Novel Game-Based Algorithm. Int. J. Intell. Eng. Syst. 2020;13:246–255. doi: 10.22266/ijies2020.0630.23. DOI
Dehghani M., Montazeri Z., Hubálovský Š. GMBO: Group Mean-Based Optimizer for Solving Various Optimization Problems. Mathematics. 2021;9:1190. doi: 10.3390/math9111190. DOI
OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems