A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35494852
PubMed Central
PMC9044275
DOI
10.7717/peerj-cs.910
PII: cs-910
Knihovny.cz E-zdroje
- Klíčová slova
- Algorithm of best and worst members of the population, Optimization, Optimization algorithm, Optimization problem,
- Publikační typ
- časopisecké články MeSH
In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO's performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO's exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.
Zobrazit více v PubMed
Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S. Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems. 2021;36(10):5887–5958. doi: 10.1002/int.22535. DOI
Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DN. Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation. 2016;26:8–22. doi: 10.1016/j.swevo.2015.07.002. DOI
Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH. Aquila optimizer: a novel meta-heuristic optimization algorithm. Computers & Industrial Engineering. 2021;157(11):107250. doi: 10.1016/j.cie.2021.107250. DOI
Banzhaf W, Nordin P, Keller RE, Francone FD. Genetic programming: an introduction. Vol. 1. San Francisco: Morgan Kaufmann Publishers; 1998.
Beyer HG, Schwefel HP. Evolution strategies—a comprehensive introduction. Natural Computing. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI
Cavazzuti M. Deterministic optimization. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics; Berlin: Springer; 2013. pp. 77–102.
Dehghani M, Hubálovský Š, Trojovský P. Cat and mouse based optimizer: a new nature-inspired optimization algorithm. Sensors. 2021;21(15):5214. doi: 10.3390/s21155214. PubMed DOI PMC
Dehghani M, Mardaneh M, Guerrero JM, Malik O, Kumar V. Football game based optimization: an application to solve energy commitment problem. International Journal of Intelligent Engineering and Systems. 2020a;13(5):514–523. doi: 10.22266/ijies2020.1031.45. DOI
Dehghani M, Mardaneh M, Malik OP, Guerrero JM, Sotelo C, Sotelo D, Nazari-Heris M, Al-Haddad K, Ramirez-Mendoza RA. Genetic algorithm for energy commitment in a power system supplied by multiple energy carriers. Sustainability. 2020b;12(23):10053. doi: 10.3390/su122310053. DOI
Dehghani M, Montazeri Z, Dehghani A, Malik OP, Morales-Menendez R, Dhiman G, Nouri N, Ehsanifar A, Guerrero JM, Ramirez-Mendoza RA. Binary spring search algorithm for solving various optimization problems. Applied Sciences. 2021;11(3):1286. doi: 10.3390/app11031286. DOI
Dehghani M, Montazeri Z, Dehghani A, Ramirez-Mendoza RA, Samet H, Guerrero JM, Dhiman G. MLO: multi leader optimizer. International Journal of Intelligent Engineering and Systems. 2020c;13(6):364–373. doi: 10.22266/ijies2020.1231.32. DOI
Dehghani M, Montazeri Z, Dehghani A, Samet H, Sotelo C, Sotelo D, Ehsanifar A, Malik OP, Guerrero JM, Dhiman G, Ramirez-Mendoza RA. DM: Dehghani method for modifying optimization algorithms. Applied Sciences. 2020d;10(21):7683. doi: 10.3390/app10217683. DOI
Dehghani M, Montazeri Z, Dhiman G, Malik O, Morales-Menendez R, Ramirez-Mendoza RA, Dehghani A, Guerrero JM, Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Applied Sciences. 2020e;10(18):6173. doi: 10.3390/app10186173. DOI
Dehghani M, Montazeri Z, Givi H, Guerrero JM, Dhiman G. Darts game optimizer: a new optimization technique based on darts game. International Journal of Intelligent Engineering and Systems. 2020f;13(5):286–294. doi: 10.22266/ijies2020.1031.26. DOI
Dehghani M, Montazeri Z, Malik OP. Energy commitment: a planning of energy carrier based on energy consumption. Electrical Engineering & Electromechanics. 2019;2019(4):69–72. doi: 10.20998/2074-272X.2019.4.10. DOI
Dehghani M, Montazeri Z, Saremi S, Dehghani A, Malik OP, Al-Haddad K, Guerrero JM. HOGO: hide objects game optimization. International Journal of Intelligent Engineering and Systems. 2020g;13(10):216–225. doi: 10.22266/ijies2020.0831.19. DOI
Dehghani M, Samet H. Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Applied Sciences. 2020;2(10):1–15. doi: 10.1007/s42452-020-03511-6. DOI
Dehghani M, Trojovský P. Teamwork optimization algorithm: a new optimization approach for function minimization/maximization. Sensors. 2021;21(13):4567. doi: 10.3390/s21134567. PubMed DOI PMC
Dhiman G. SSC: a hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowledge-Based Systems. 2021;222(35):106926. doi: 10.1016/j.knosys.2021.106926. DOI
Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M. A novel algorithm for global optimization: rat swarm optimizer. Journal of Ambient Intelligence and Humanized Computing. 2020;12:8457–8482. doi: 10.1007/s12652-020-02580-0. DOI
Dhiman G, Kumar V. Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software. 2017;114(10):48–70. doi: 10.1016/j.advengsoft.2017.05.014. DOI
Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 1996;26(1):29–41. doi: 10.1109/3477.484436. PubMed DOI
Doumari SA, Givi H, Dehghani M, Malik OP. Ring toss game-based optimization algorithm for solving various optimization problems. International Journal of Intelligent Engineering and Systems. 2021a;14(3):545–554. doi: 10.22266/ijies2021.0630.46. DOI
Doumari SA, Givi H, Dehghani M, Montazeri Z, Leiva V, Guerrero JM. A new two-stage algorithm for solving optimization problems. Entropy. 2021b;23(4):491. doi: 10.3390/e23040491. PubMed DOI PMC
Faramarzi A, Afshar M. A novel hybrid cellular automata-linear programming approach for the optimal sizing of planar truss structures. Civil Engineering and Environmental Systems. 2014;31(3):209–228. doi: 10.1080/10286608.2013.820280. DOI
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: a nature-inspired metaheuristic. Expert Systems with Applications. 2020;152(4):113377. doi: 10.1016/j.eswa.2020.113377. DOI
Fogel LJ, Owens AJ, Walsh MJ. New York: John Wiley & Sons; 1966. Artificial intelligence through simulated evolution.
Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine Learning. 1988;3(2):95–99. doi: 10.1023/A:1022602019183. DOI
Han X, Dong Y, Yue L, Xu Q, Xie G, Xu X. State-transition simulated annealing algorithm for constrained and unconstrained multi-objective optimization problems. Applied Intelligence. 2021;51(2):775–787. doi: 10.1007/s10489-020-01836-8. DOI
Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence. 2021;51(3):1531–1551. doi: 10.1007/s10489-020-01893-z. DOI
Karami H, Anaraki MV, Farzin S, Mirjalili S. Flow Direction Algorithm (FDA): a novel optimization approach for solving optimization problems. Computers & Industrial Engineering. 2021;156(4):107224. doi: 10.1016/j.cie.2021.107224. DOI
Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence. 2020;90(2):103541. doi: 10.1016/j.engappai.2020.103541. DOI
Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: tug of war optimization. International Journal of Optimization in Civil Engineering. 2016;6(4):469–492.
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks.1995.
Lera D, Sergeyev YD. GOSH: derivative-free global optimization using multi-dimensional space-filling curves. Journal of Global Optimization. 2018;71(1):193–211. doi: 10.1007/s10898-017-0589-7. DOI
MiarNaeimi F, Azizyan G, Rashki M. Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems. 2021;213(2):106711. doi: 10.1016/j.knosys.2020.106711. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software. 2016;95(12):51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Moghdani R, Salimifard K. Volleyball premier league algorithm. Applied Soft Computing. 2018;64(5):161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Mohammadi-Balani A, Nayeri MD, Azar A, Taghizadeh-Yazdi M. Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Computers & Industrial Engineering. 2021;152:107050. doi: 10.1016/j.cie.2020.107050. DOI
Pereira JLJ, Francisco MB, Diniz CA, Oliver GA, Cunha SS, Jr, Gomes GF. Lichtenberg algorithm: a novel hybrid physics-based meta-heuristic for global optimization. Expert Systems with Applications. 2021;170(11):114522. doi: 10.1016/j.eswa.2020.114522. DOI
Prakash V, Bala A. A novel scheduling approach for workflow management in cloud computing. 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014).2014a.
Prakash V, Bala AG. An efficient workflow scheduling approach in cloud computing. 2014b. Ph.D. Thesis, Thapar Institute of Engineering and Technology, Patiala, India.
Prakash V, Bawa S, Garg L. Multi-dependency and time based resource scheduling algorithm for scientific applications in cloud computing. Electronics. 2021;10(11):1320. doi: 10.3390/electronics10111320. DOI
Rao RV, Savsani VJ, Vakharia D. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design. 2011;43(3):303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Information Sciences. 2009;179(13):2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Simon D. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation. 2008;12(6):702–713. doi: 10.1109/TEVC.2008.919004. DOI
Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI
Vassallo K, Garg L, Prakash V, Ramesh K. Contemporary technologies and methods for cross-platform application development. Journal of Computational and Theoretical Nanoscience. 2019;16(9):3854–3859. doi: 10.1166/jctn.2019.8261. DOI
Wilcoxon F. Individual comparisons by ranking methods. Breakthroughs in Statistics; Berlin: Springer; 1992. pp. 196–202.
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary computation. 1997;1(1):67–82. doi: 10.1109/4235.585893. DOI
Zeidabadi F-A, Doumari S-A, Dehghani M, Montazeri Z, Trojovský P, Dhiman G. MLA: a new mutated leader algorithm for solving optimization problems. Computers, Materials & Continua. 2022;70(3):5631–5649. doi: 10.32604/cmc.2022.021072. DOI
Zhao W, Wang L, Zhang Z. Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications. 2020;32(13):9383–9425. doi: 10.1007/s00521-019-04452-x. DOI