Clozapine Reverses Dysfunction of Glutamatergic Neurons Derived From Clozapine-Responsive Schizophrenia Patients

. 2022 ; 16 () : 830757. [epub] 20220223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35281293

The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.

Zobrazit více v PubMed

Akkouh I. A., Hribkova H., Grabiec M., Budínska E., Szabo A., Kasparek T., et al. (2021). Derivation and molecular characterization of a morphological sub-population of human ipsc astrocytes reveal a potential role in schizophrenia and clozapine response. Schizophr. Bull. 48 190–198. 10.1038/s41398-021-01681-4 PubMed DOI PMC

Andreasen N. C., Flaum M., Arndt S. (1992). The comprehensive assessment of symptoms and history (CASH). An instrument for assessing diagnosis and psychopathology. Arch. Gen. Psychiatry 49 615–623. 10.1001/archpsyc.1992.01820080023004 PubMed DOI

Arion D., Huo Z., Enwright J. F., Corradi J. P., Tseng J. P., Lewis D. A. (2017). Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders. Biol. Psychiatry 82 594–600. 10.1016/j.biopsych.2017.03.018 PubMed DOI PMC

Arvanov V. L., Liang X., Schwartz J., Grossman S., Wang R. Y. (1997). Clozapine and haloperidol modulate n-methyl-d-aspartate- and non-n-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J. Pharmacol. Exp. Ther. 283 226–234. PubMed

Bragina L., Melone M., Fattorini G., Torres-Ramos M., Vallejo-Illarramendi A., Matute C., et al. (2006). Glt-1 down-regulation induced by clozapine in rat frontal cortex is associated with synaptophysin up-regulation. J. Neurochem. 99 134–141. 10.1111/j.1471-4159.2006.04030.x PubMed DOI

Brennand K. J., Simone A., Jou J., Gelboin-Burkhart C., Tran N., Sangar S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473 221–225. 10.1038/nature09915 PubMed DOI PMC

Bringas M. E., Morales-Medina J. C., Flores-Vivaldo Y., Negrete-Diaz J. V., Aguilar-Alonso P., León-Chávez B. A., et al. (2012). Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology 62 1848–1857. 10.1016/j.neuropharm.2011.12.008 PubMed DOI

Buchanan R. W., Heinrichs D. W. (1989). The neurological evaluation scale (nes): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res. 27 335–350. 10.1016/0165-1781(89)90148-0 PubMed DOI

Carroll L. S., Woolf R., Ibrahim Y., Williams H. J., Dwyer S., Walters J., et al. (2016). Mutation screening of scn2a in schizophrenia and identification of a novel loss-of-function mutation. Psychiatr. Genet. 26 60–65. 10.1097/YPG.0000000000000110 PubMed DOI PMC

Chen L., Yang C. R. (2002). Interaction of dopamine d1 and nmda receptors mediates acute clozapine potentiation of glutamate epsps in rat prefrontal cortex. J. Neurophysiol. 87 2324–2336. 10.1152/jn.2002.87.5.2324 PubMed DOI

Chen M. L., Tsai F. M., Lee M. C., Lin Y. Y. (2016). Antipsychotic drugs induce cell cytoskeleton reorganization in glial and neuronal cells via rho/cdc42 signal pathway. Prog. Neuropsychopharmacol. Biol. Psychiatry 71 14–26. 10.1016/j.pnpbp.2016.06.003 PubMed DOI

Collado-Torres L., Burke E. E., Peterson A., Shin J., Straub R. E., Rajpurohit A., et al. (2019). Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103 203.e8–216.e8. 10.1016/j.neuron.2019.05.013 PubMed DOI PMC

Crespo-Facorro B., Prieto C., Sainz J. (2014). Schizophrenia gene expression profile reverted to normal levels by antipsychotics. Int. J. Neuropsychopharmacol. 18:yu066. 10.1093/ijnp/pyu066 PubMed DOI PMC

Critchlow H. M., Maycox P. R., Skepper J. N., Krylova O. (2006). Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol. Cell. Neurosci. 32 356–365. 10.1016/j.mcn.2006.05.007 PubMed DOI

Datta D., Arnsten A. F. T. (2018). Unique molecular regulation of higher-order prefrontal cortical circuits: insights into the neurobiology of schizophrenia. ACS Chem. Neurosci. 9 2127–2145. 10.1021/acschemneuro.7b00505 PubMed DOI PMC

Dziedzicka-Wasylewska M., Faron-Górecka A., Górecki A., Kuśemider M. (2008). Mechanism of action of clozapine in the context of dopamine d1-d2 receptor hetero-dimerization–a working hypothesis. Pharmacol. Rep. 60 581–587. PubMed

Enwright J. F., Huo Z., Arion D., Corradi J. P., Tseng G., Lewis D. A. (2018). Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Mol. Psychiatry 23 1606–1613. 10.1038/mp.2017.216 PubMed DOI PMC

Etemadikhah M., Niazi A., Wetterberg L., Feuk L. (2020). Transcriptome analysis of fibroblasts from schizophrenia patients reveals differential expression of schizophrenia-related genes. Sci. Rep. 10:630. 10.1038/s41598-020-57467-z PubMed DOI PMC

Falk A., Heine V. M., Harwood A. J., Sullivan P. F., Peitz M., Brüstle O., et al. (2016). Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol. Psychiatry 21:1321. 10.1038/mp.2016.100 PubMed DOI PMC

Farooq S., Taylor M. (2011). Clozapine: dangerous orphan or neglected friend? Br. J. Psychiatry 198 247–249. 10.1192/bjp.bp.110.088690 PubMed DOI

Garey L. (2010). When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J. Anat. 217 324–333. 10.1111/j.1469-7580.2010.01231.x PubMed DOI PMC

Gessa G. L., Devoto P., Diana M., Flore G., Melis M., Pistis M. (2000). Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22 642–649. 10.1016/S0893-133X(00)00087-7 PubMed DOI

Glausier J. R., Lewis D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience 251 90–107. 10.1016/j.neuroscience.2012.04.044 PubMed DOI PMC

Gonzalez-Burgos G., Lewis D. A. (2012). Nmda receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr. Bull. 38 950–957. 10.1093/schbul/sbs010 PubMed DOI PMC

Grabiec M., Hříbková H., Vařecha M., Střítecká D., Hampl A., Dvořák P., et al. (2016). Stage-specific roles of fgf2 signaling in human neural development. Stem Cell Res. 17 330–341. 10.1016/j.scr.2016.08.012 PubMed DOI

Harrison P. J. (2000). Postmortem studies in schizophrenia. Dialogues Clin. Neurosci. 2 349–357. 10.31887/DCNS.2000.2.4/pharrison PubMed DOI PMC

Harrison P. J. (2015). Gaba circuitry, cells and molecular regulation in schizophrenia: life in the graveyard. Schizophr. Res. 167 108–110. 10.1016/j.schres.2015.02.003 PubMed DOI

Homayoun H., Moghaddam B. (2007). Fine-tuning of awake prefrontal cortex neurons by clozapine: comparison with haloperidol and n-desmethylclozapine. Biol. Psychiatry 61 679–687. 10.1016/j.biopsych.2006.05.016 PubMed DOI PMC

Imbrici P., Camerino D. C., Tricarico D. (2013). Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front. Genet. 4:76. 10.3389/fgene.2013.00076 PubMed DOI PMC

Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., et al. (2008). Kegg for linking genomes to life and the environment. Nucleic Acids Res. 36 D480–D484. 10.1093/nar/gkm882 PubMed DOI PMC

Kedracka-Krok S., Swiderska B., Jankowska U., Skupien-Rabian B., Solich J., Buczak K., et al. (2015). Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J. Neurochem. 132 657–676. 10.1111/jnc.13007 PubMed DOI

Kern R. S., Nuechterlein K. H., Green M. F., Baade L. E., Fenton W. S., Gold J. M., et al. (2008). The matrics consensus cognitive battery, part 2: co-norming and standardization. Am. J. Psychiatry 165 214–220. 10.1176/appi.ajp.2007.07010043 PubMed DOI

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L. (2013). Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R36. 10.1186/gb-2013-14-4-r36 PubMed DOI PMC

Krzystanek M., Bogus K., Pałasz A., Krzystanek E., Worthington J. J., Wiaderkiewicz R. (2015). Effects of long-term treatment with the neuroleptics haloperidol, clozapine and olanzapine on immunoexpression of nmda receptor subunits nr1, nr2a and nr2b in the rat hippocampus. Pharmacol. Rep. 67 965–969. 10.1016/j.pharep.2015.01.017 PubMed DOI

Lameh J., Burstein E. S., Taylor E., Weiner D. M., Vanover K. E., Bonhaus D. W. (2007). Pharmacology of n-desmethylclozapine. Pharmacol. Ther. 115 223–231. 10.1016/j.pharmthera.2007.05.004 PubMed DOI

Lansner A., Marklund P., Sikström S., Nilsson L. G. (2013). Reactivation in working memory: an attractor network model of free recall. PLoS One 8:e73776. 10.1371/journal.pone.0073776 PubMed DOI PMC

Lee B. J., Marchionni L., Andrews C. E., Norris A. L., Nucifora L. G., Wu Y. C., et al. (2017). Analysis of differential gene expression mediated by clozapine in human postmortem brains. Schizophr. Res. 185 58–66. 10.1016/j.schres.2016.12.017 PubMed DOI PMC

Mao X., Cai T., Olyarchuk J. G., Wei L. (2005). Automated genome annotation and pathway identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformatics 21 3787–3793. 10.1093/bioinformatics/bti430 PubMed DOI

Meltzer H. Y. (1994). An overview of the mechanism of action of clozapine. J. Clin. Psychiatry 55(Suppl. B), 47–52. PubMed

Meltzer H. Y. (2013). Update on typical and atypical antipsychotic drugs. Annu. Rev. Med. 64 393–406. 10.1146/annurev-med-050911-161504 PubMed DOI

Morosini P. L., Magliano L., Brambilla L., Ugolini S., Pioli R. (2000). Development, reliability and acceptability of a new version of the dsm-iv social and occupational functioning assessment scale (sofas) to assess routine social functioning. Acta Psychiatr. Scand. 101 323–329. PubMed

Nakazawa T., Kikuchi M., Ishikawa M., Yamamori H., Nagayasu K., Matsumoto T., et al. (2017). Differential gene expression profiles in neurons generated from lymphoblastoid b-cell line-derived ips cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophr. Res. 181 75–82. 10.1016/j.schres.2016.10.012 PubMed DOI

Nascimento J. M., Martins-de-Souza D. (2015). The proteome of schizophrenia. NPJ Schizophr. 1:14003. 10.1038/npjschz.2014.3 PubMed DOI PMC

Nilsson L. K., Schwieler L., Engberg G., Linderholm K. R., Erhardt S. (2005). Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int. J. Neuropsychopharmacol. 8 329–339. 10.1017/S1461145705005080 PubMed DOI

Ninan I., Wang R. Y. (2003). Modulation of the ability of clozapine to facilitate nmda- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur. J. Neurosci. 17 1306–1312. 10.1046/j.1460-9568.2003.02549.x PubMed DOI

Nucifora F. C., Mihaljevic M., Lee B. J., Sawa A. (2017). Clozapine as a model for antipsychotic development. Neurotherapeutics 14 750–761. 10.1007/s13311-017-0552-9 PubMed DOI PMC

Okhuijsen-Pfeifer C., Huijsman E. A. H., Hasan A., Sommer I. E. C., Leucht S., Kahn R. S., et al. (2018). Clozapine as a first- or second-line treatment in schizophrenia: a systematic review and meta-analysis. Acta Psychiatr. Scand. 138 281–288. 10.1111/acps.12954 PubMed DOI PMC

Perez J. M., Berto S., Gleason K., Ghose S., Tan C., Kim T. K., et al. (2021). Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol. Psychiatry 26 2577–2589. 10.1038/s41380-020-0696-6 PubMed DOI

Schwieler L., Erhardt S. (2003). Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 28 1770–1777. 10.1038/sj.npp.1300255 PubMed DOI

Schwieler L., Linderholm K. R., Nilsson-Todd L. K., Erhardt S., Engberg G. (2008). Clozapine interacts with the glycine site of the nmda receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci. 83 170–175. 10.1016/j.lfs.2008.05.014 PubMed DOI

Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. (1998). The mini-international neuropsychiatric interview (m.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for dsm-iv and icd-10. J. Clin. Psychiatry 59(Suppl. 20), 22–33;quiz34–57. PubMed

Siskind D., Siskind V., Kisely S. (2017). Clozapine response rates among people with treatment-resistant schizophrenia: data from a systematic review and meta-analysis. Can. J. Psychiatry 62 772–777. 10.1177/0706743717718167 PubMed DOI PMC

Smith M. R., Readhead B., Dudley J. T., Morishita H. (2019). Critical period plasticity-related transcriptional aberrations in schizophrenia and bipolar disorder. Schizophr. Res. 207 12–21. 10.1016/j.schres.2018.10.021 PubMed DOI PMC

Stachowiak E. K., Benson C. A., Narla S. T., Dimitri A., Chuye L. E. B., Dhiman S., et al. (2017). Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of fgfr1. Transl. Psychiatry 7:6. 10.1038/s41398-017-0054-x PubMed DOI PMC

Stertz L., Di Re J., Pei G., Fries G. R., Mendez E., Li S., et al. (2021). Convergent genomic and pharmacological evidence of pi3k/gsk3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacology 46 673–682. 10.1038/s41386-020-00924-0 PubMed DOI PMC

Tanahashi S., Yamamura S., Nakagawa M., Motomura E., Okada M. (2012). Clozapine, but not haloperidol, enhances glial d-serine and l-glutamate release in rat frontal cortex and primary cultured astrocytes. Br. J. Pharmacol. 165 1543–1555. 10.1111/j.1476-5381.2011.01638.x PubMed DOI PMC

Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., van Baren M. J., et al. (2010). Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28 511–515. 10.1038/nbt.1621 PubMed DOI PMC

Vallejo-Illarramendi A., Torres-Ramos M., Melone M., Conti F., Matute C. (2005). Clozapine reduces glt-1 expression and glutamate uptake in astrocyte cultures. Glia 50 276–279. 10.1002/glia.20172 PubMed DOI

van Erp T. G. M., Walton E., Hibar D. P., Schmaal L., Jiang W., Glahn D. C., et al. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (enigma) consortium. Biol. Psychiatry 84 644–654. 10.1016/j.biopsych.2018.04.023 PubMed DOI PMC

Wittmann M., Marino M. J., Henze D. A., Seabrook G. R., Conn P. J. (2005). Clozapine potentiation of n-methyl-d-aspartate receptor currents in the nucleus accumbens: role of nr2b and protein kinase a/src kinases. J. Pharmacol. Exp. Ther. 313 594–603. 10.1124/jpet.104.080200 PubMed DOI

Young M. D., Wakefield M. J., Smyth G. K., Oshlack A. (2010). Gene ontology analysis for rna-seq: accounting for selection bias. Genome Biol. 11:R14. 10.1186/gb-2010-11-2-r14 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...