Derivation and Molecular Characterization of a Morphological Subpopulation of Human iPSC Astrocytes Reveal a Potential Role in Schizophrenia and Clozapine Response
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34357384
PubMed Central
PMC8781347
DOI
10.1093/schbul/sbab092
PII: 6343183
Knihovny.cz E-zdroje
- Klíčová slova
- astrocyte diversity, d-serine, glutamate, hiPSC, transcription,
- MeSH
- antipsychotika farmakologie MeSH
- astrocyty metabolismus MeSH
- dospělí MeSH
- indukované pluripotentní kmenové buňky MeSH
- klozapin farmakologie MeSH
- kyselina glutamová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- schizofrenie farmakoterapie metabolismus MeSH
- serin metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antipsychotika MeSH
- klozapin MeSH
- kyselina glutamová MeSH
- serin MeSH
Astrocytes are the most abundant cell type in the human brain and are important regulators of several critical cellular functions, including synaptic transmission. Although astrocytes are known to play a central role in the etiology and pathophysiology of schizophrenia, little is known about their potential involvement in clinical response to the antipsychotic clozapine. Moreover, astrocytes display a remarkable degree of morphological diversity, but the potential contribution of astrocytic subtypes to disease biology and drug response has received little attention. Here, we used state-of-the-art human induced pluripotent stem cell (hiPSC) technology to derive a morphological subtype of astrocytes from healthy individuals and individuals with schizophrenia, including responders and nonresponders to clozapine. Using functional assays and transcriptional profiling, we identified a distinct gene expression signature highly specific to schizophrenia as shown by disease association analysis of more than 10 000 diseases. We further found reduced levels of both glutamate and the NMDA receptor coagonist d-serine in subtype astrocytes derived from schizophrenia patients, and that exposure to clozapine only rescued this deficiency in cells from clozapine responders, providing further evidence that d-serine in particular, and NMDA receptor-mediated glutamatergic neurotransmission in general, could play an important role in disease pathophysiology and clozapine action. Our study represents a first attempt to explore the potential contribution of astrocyte diversity to schizophrenia pathophysiology using a human cellular model. Our findings suggest that specialized subtypes of astrocytes could be important modulators of disease pathophysiology and clinical drug response, and warrant further investigations.
Bioinformatics in Translational Research RECETOX and IBA Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Medical Genetics Oslo University Hospital Oslo Norway
Department of Psychiatry Faculty of Medicine and University Hospital Brno Brno Czech Republic
Division of Mental Health and Addiction Oslo University Hospital Oslo Norway
NORMENT Department of Clinical Science University of Bergen Bergen Norway
NORMENT Institute of Clinical Medicine University of Oslo Oslo Norway
Zobrazit více v PubMed
Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct. 2017;222(5):2017–2029. PubMed PMC
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73(5):204–215. PubMed
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: from astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87(Pt A):126–146. PubMed PMC
Tarasov VV, Svistunov AA, Chubarev VN, et al. . Alterations of astrocytes in the context of schizophrenic dementia. Front Pharmacol. 2019;10:1612. PubMed PMC
Khakh BS, Deneen B. The emerging nature of astrocyte diversity. Annu Rev Neurosci. 2019;42:187–207. PubMed
Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol. 2012;814:23–45. PubMed PMC
Oberheim NA, Takano T, Han X, et al. . Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–3287. PubMed PMC
Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015;18(7):942–952. PubMed PMC
Westergard T, Rothstein JD. Astrocyte diversity: current insights and future directions. Neurochem Res. 2020;45(6):1298–1305. PubMed PMC
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis. 2019;131:104162. PubMed
Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. ; International Stem Cell Initiative . Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25(7):803–816. PubMed
Andreasen NC, Flaum M, Arndt S. The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry. 1992;49(8):615–623. PubMed
Sheehan DV, Lecrubier Y, Sheehan KH, et al. . The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33;quiz 34. PubMed
Grabiec M, Hříbková H, Vařecha M, et al. . Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res. 2016;17(2):330–341. PubMed
Hříbková H, Grabiec M, Klemová D, Slaninová I, Sun YM. Calcium signaling mediates five types of cell morphological changes to form neural rosettes. J Cell Sci. 2018;131(3):jcs206896. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. PubMed PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–360. PubMed PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. PubMed
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. PubMed PMC
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. . The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–D855. PubMed PMC
Colombo JA, Reisin HD. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res. 2004;1006(1):126–131. PubMed
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32(8):421–431. PubMed
Zhang Y, Sloan SA, Clarke LE, et al. . Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37–53. PubMed PMC
Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30. PubMed PMC
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–982. PubMed PMC
Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 2016;37(9):608–620. PubMed
Akkouh IA, Ueland T, Hansson L, et al. . Decreased IL-1β-induced CCL20 response in human iPSC-astrocytes in schizophrenia: potential attenuating effects on recruitment of regulatory T cells. Brain Behav Immun. 2020;87:634–644. PubMed
Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharmgenomics Pers Med. 2016;9:117–129. PubMed PMC
Goldstein ME, Anderson VM, Pillai A, Kydd RR, Russell BR. Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia. Int J Neuropsychopharmacol. 2015;18(6):pyu117. PubMed PMC
Samanaite R, Gillespie A, Sendt KV, McQueen G, MacCabe JH, Egerton A. Biological predictors of clozapine response: a systematic review. Front Psychiatry. 2018;9:327. PubMed PMC
Rizo J, Rosenmund C. Synaptic vesicle fusion. Nat Struct Mol Biol. 2008;15(7):665–674. PubMed PMC
Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res. 2011;1407:107–122. PubMed PMC
Mei YY, Wu DC, Zhou N. Astrocytic regulation of glutamate transmission in schizophrenia. Front Psychiatry. 2018;9:544. PubMed PMC
Kantrowitz JT, Malhotra AK, Cornblatt B, et al. . High dose d-serine in the treatment of schizophrenia. Schizophr Res. 2010;121(1-3):125–130. PubMed PMC
MacKay MB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. d-serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Front Psychiatry. 2019;10:25. PubMed PMC
Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M. Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol. 2012;165(5):1543–1555. PubMed PMC