cat and mouse
Dotaz
Zobrazit nápovědu
Toxoplasma gondii reportedly manipulates rodent behaviour to increase transmission to its definitive feline host. We compared the effects of mouse infection by two Type II strains of T. gondii, Prugniaud (PRU) and ME49, on attraction to cat odour, locomotor activity, anxiety, sensorimotor gating, and spatial working and recognition memory 2 months post-infection (mpi). Attraction to cat odour was reassessed 7 mpi. At 2 mpi, mice infected with either strain exhibited significantly more attraction to cat odour than uninfected animals did, but only PRU-infected mice exhibited this behaviour 7 mpi. PRU-infected mice had significantly greater body weights and hyperactivity, while ME49-infected mice exhibited impaired spatial working memory. No differences in parasite antibody titres were seen between PRU- and ME49-infected mice. The present data suggest the effect of T. gondii infection on mouse behaviour is parasite strain-dependent.
The faeces of the red fox, Vulpes vulpes (Linnaeus), and the domestic cat, Felis catus (Linnaeus), can be responsible for spreading eggs of Echinococcus multilocularis Leuckart, 1863 and oocysts of Toxoplasma gondii (Nicolle et Manceaux, 1908) into the environment. The accidental ingestion of these eggs or oocysts, through consumption of raw fruits or vegetables grown in or in contact with contaminated soil, can lead to alveolar echinococcosis (AE) or toxoplasmosis in humans. The present study provides a quantitative assessment of the faecal deposition by foxes and cats in kitchen gardens where fruits and vegetables are grown and its consequences for zoonosis transmission. The density of definitive host faeces is considered as one of the main factors in infection risk for intermediate hosts. The density of fox and cat faeces, as well as the prevalence of both AE and toxoplasmosis in rodent populations (contaminated by ingestion of eggs or oocysts), were compared within and outside kitchen gardens. Our results showed that the mean density of fox faeces did not significantly differ between kitchen gardens and habitat edges (0.29 ± 0.04 faeces/m2 vs 0.22 ± 0.02 faeces/m2), the latter being known as an area of high fox faeceal densities. The density of cat faeces was significantly higher within the kitchen garden than outside (0.86 ± 0.22 faeces/m2 vs 0.04 ± 0.02 faeces/m2). The sampled kitchen gardens might therefore be considered as possible hotspots for both fox and cat defecation. Of the 130 rodents trapped, 14% were infected by at least one species of fox or cat intestinal parasite. These rodents were significantly more often infected when they were exposed to a kitchen garden. These results suggest that the deposit of fox and cat faeces in kitchen gardens would significantly impact the risk of human exposure to E. multilocularis and T. gondii. and should be prevented using effective means.
- MeSH
- Arvicolinae * MeSH
- Echinococcus multilocularis izolace a purifikace MeSH
- echinokokóza epidemiologie parazitologie veterinární MeSH
- feces parazitologie MeSH
- kočky MeSH
- lišky MeSH
- Murinae * MeSH
- nemoci hlodavců epidemiologie parazitologie MeSH
- prevalence MeSH
- Toxoplasma izolace a purifikace MeSH
- toxoplazmóza zvířat epidemiologie parazitologie MeSH
- zahrady MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Francie MeSH
Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.
- MeSH
- Alagillův syndrom patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- rentgenová mikrotomografie klasifikace metody MeSH
- žlučové cesty růst a vývoj patofyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. METHODOLOGY/PRINCIPAL FINDINGS: The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. CONCLUSION/SIGNIFICANCE: The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism.
- MeSH
- biologické modely MeSH
- chování zvířat MeSH
- chronická nemoc MeSH
- dopamin metabolismus MeSH
- kočky MeSH
- kontrola chování MeSH
- mozek parazitologie patologie MeSH
- myši MeSH
- orgánová specificita MeSH
- počet buněk MeSH
- tělesná hmotnost fyziologie MeSH
- Toxoplasma cytologie fyziologie MeSH
- toxoplazmóza parazitologie patologie MeSH
- tropismus fyziologie MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Micro-CT imaging is a well-established morphological method for the visualization of animal models. We used ethanol fixation of the mouse brains to perform high-resolution micro-CT scans showing in great details brain grey and white matters. It was possible to identify more than 50 neuroanatomical structures on the 5 selected coronal sections. Among white matter structures, we identified fornix, medial lemniscus, crossed tectospinal pathway, mammillothalamic tract, and the sensory root of the trigeminal ganglion. Among grey matter structures, we identified basal nuclei, habenular complex, thalamic nuclei, amygdala, subparts of hippocampal formation, superior colliculi, Edinger-Westphal nucleus, and others. We suggest that micro-CT of the mouse brain could be used for neurohistological lesions evaluation as an alternative to classical neurohistology because it does not destroy brain tissue.
- MeSH
- ethanol chemie MeSH
- fixace tkání * MeSH
- mozek diagnostické zobrazování MeSH
- myši MeSH
- rentgenová mikrotomografie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- antidota farmakologie terapeutické užití MeSH
- dýchání účinky léků MeSH
- kočky MeSH
- krysa rodu rattus MeSH
- myši MeSH
- nervový přenos účinky záření MeSH
- organofosforové sloučeniny toxicita MeSH
- otrava diagnóza chemicky indukované MeSH
- oximy aplikace a dávkování farmakologie toxicita MeSH
- soman toxicita MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.
- MeSH
- autoantigeny metabolismus MeSH
- dendritické buňky imunologie metabolismus MeSH
- epitelové buňky imunologie metabolismus MeSH
- imunologická tolerance * MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- prezentace antigenu imunologie MeSH
- thymus cytologie imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Salivary hyaluronidases have been described in a few bloodsucking arthropods. However, very little is known about the presence of this enzyme in various bloodsucking insects and no data are available on its effect on transmitted microorganisms. Here, we studied hyaluronidase activity in thirteen bloodsucking insects belonging to four different orders. In addition, we assessed the effect of hyaluronidase coinoculation on the outcome of Leishmania major infection in BALB/c mice. PRINCIPAL FINDINGS: High hyaluronidase activity was detected in several Diptera tested, namely deer fly Chrysops viduatus, blackflies Odagmia ornata and Eusimilium latipes, mosquito Culex quinquefasciatus, biting midge Culicoides kibunensis and sand fly Phlebotomus papatasi. Lower activity was detected in cat flea Ctenocephalides felis. No activity was found in kissing bug Rhodnius prolixus, mosquitoes Anopheles stephensi and Aedes aegypti, tse-tse fly Glossina fuscipes, stable fly Stomoxys calcitrans and human louse Pediculus humanus. Hyaluronidases of different insects vary substantially in their molecular weight, the structure of the molecule and the sensitivity to reducing conditions or sodium dodecyl sulphate. Hyaluronidase exacerbates skin lesions caused by Leishmania major; more severe lesions developed in mice where L. major promastigotes were coinjected with hyaluronidase. CONCLUSIONS: High hyaluronidase activities seem to be essential for insects with pool-feeding mode, where they facilitate the enlargement of the feeding lesion and serve as a spreading factor for other pharmacologically active compounds present in saliva. As this enzyme is present in all Phlebotomus and Lutzomyia species studied to date, it seems to be one of the factors responsible for enhancing activity present in sand fly saliva. We propose that salivary hyaluronidase may facilitate the spread of other vector-borne microorganisms, especially those transmitted by insects with high hyaluronidase activity, namely blackflies (Simuliidae), biting midges (Ceratopogonidae) and horse flies (Tabanidae).
- MeSH
- Ceratopogonidae enzymologie parazitologie MeSH
- Diptera enzymologie MeSH
- hmyz - vektory MeSH
- hyaluronoglukosaminidasa genetika izolace a purifikace metabolismus MeSH
- kočky parazitologie MeSH
- leishmanióza patofyziologie přenos MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- Phlebotomus enzymologie MeSH
- Simuliidae parazitologie MeSH
- slinné žlázy parazitologie MeSH
- sršňovití enzymologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- kočky parazitologie MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation.
- MeSH
- ethanol chemie MeSH
- fotony * MeSH
- ledviny diagnostické zobrazování MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- plíce diagnostické zobrazování MeSH
- rentgenová mikrotomografie přístrojové vybavení metody MeSH
- srdce diagnostické zobrazování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH