Biologic and Clinical Analysis of Childhood Gamma Delta T-ALL Identifies LMO2/STAG2 Rearrangements as Extremely High Risk
Language English Country United States Media print
Document type Journal Article
Grant support
U24 CA196173
NCI NIH HHS - United States
T32 CA236748
NCI NIH HHS - United States
K99 CA279756
NCI NIH HHS - United States
P30 CA021765
NCI NIH HHS - United States
F32 CA254140
NCI NIH HHS - United States
U10 CA180820
NCI NIH HHS - United States
U10 CA180899
NCI NIH HHS - United States
UNCE/24/MED/003
Charles University Research Center
U10 CA180866
NCI NIH HHS - United States
NU23J-03-00026
Ministry of Health of the Czech Republic
R35 CA197695
NCI NIH HHS - United States
Henry Schueler 41&9 Foundation
UG1 CA189859
NCI NIH HHS - United States
R03 CA256550
NCI NIH HHS - United States
U24 CA114766
NCI NIH HHS - United States
X01 HD100702
Common Fund (NIH Common Fund)
Robert J. Arceci Innovation Award
St. Baldrick's Foundation (SBF)
PubMed
38916500
PubMed Central
PMC11452281
DOI
10.1158/2159-8290.cd-23-1452
PII: 746151
Knihovny.cz E-resources
- MeSH
- Adaptor Proteins, Signal Transducing * genetics metabolism MeSH
- Child MeSH
- Gene Rearrangement MeSH
- Infant MeSH
- Humans MeSH
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma genetics pathology MeSH
- Child, Preschool MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- LIM Domain Proteins * genetics MeSH
- Proto-Oncogene Proteins MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing * MeSH
- LMO2 protein, human MeSH Browser
- Cell Cycle Proteins MeSH
- LIM Domain Proteins * MeSH
- Proto-Oncogene Proteins MeSH
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Abramson Cancer Center Univeristy of Pennsylvania Philadelphia Pennsylvania
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
Center for Applied Bioinformatics St Jude Children's Research Hospital Memphis Tennessee
Center of Excellence for Leukemia Studies St Jude Children's Research Hospital Memphis Tennessee
Child Health Research Centre the University of Queensland Brisbane Australia
Children's Cancer Center National Center for Child Health and Development Tokyo Japan
Clinical Research Center National Hospital Organization Nagoya Medical Center Nagoya Japan
Curtin Medical School Curtin University Perth Australia
Department of Biostatistics St Jude Children's Research Hospital Memphis Tennessee
Department of Clinical Immunology Rigshospitalet Copenhagen Denmark
Department of Global Pediatric Medicine St Jude Children's Research Hospital Memphis Tennessee
Department of Hematology and Oncology Miyagi Children's Hospital Sendai Japan
Department of Hematology Oncology Saitama Children's Medical Center Saitama Japan
Department of Hematology Shaare Zedek Medical Center Jerusalem Israel
Department of Immunology St Jude Children's Research Hospital Memphis Tennessee
Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
Department of Oncology Montefiore Medical Center Bronx New York
Department of Oncology St Jude Children's Research Hospital Memphis Tennessee
Department of Paediatrics National University of Singapore Singapore Singapore
Department of Paediatrics The Chinese University of Hong Kong Hong Kong China
Department of Pathology St Jude Children's Research Hospital Memphis Tennessee
Department of Pathology University of Alabama at Birmingham Birmingham Alabama
Department of Pediatric Hematology and Oncology Medical School Hannover Hannover Germany
Department of Pediatrics and Developmental Biology Tokyo Medical and Dental University Tokyo Japan
Department of Pediatrics Ehime University Matsuyama Japan
Department of Pediatrics Graduate School of Medicine Kyoto University Kyoto Japan
Department of Pediatrics Hokkaido University Graduate School of Medicine Sapporo Japan
Department of Pediatrics Kyoto Prefectural University of Medicine Tokyo Japan
Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
Department of Pediatrics Tokyo University Tokyo Japan
Department of Pediatrics University Hospital Schleswig Holstein Kiel Germany
Department of Systems Biology Beckman Research Institute of City of Hope Duarte California
Division of Oncology Children's Hospital of Philadelphia Philadelphia Pennsylvania
EORTC headquarters Brussels Belgium
Gilead Sciences Inc Foster City California
Hematology and Bone Marrow Transplant Unit ASST Papa Giovanni XXIII Hospital Bergamo Italy
Labdia Labordiagnostik GmbH Vienna Austria
Oncology Service Children's Health Queensland Hospital and Health Service Brisbane Australia
Pediatric Hemato Oncology and Transplantation HUB HUDERF Brussels Belgium
Preclinical Pharmacokinetic Shared Resource St Jude Children's Research Hospital Memphis Tennessee
Princess Máxima Center for Pediatric Oncology Utrecht the Netherlands
St Anna Children's Cancer Research Institute Vienna Austria
Tettamanti Center Fondazione IRCCS San Gerardo dei Tintori Monza Italy
See more in PubMed
Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved Survival for Children and Young Adults With T-Lineage Acute Lymphoblastic Leukemia: Results From the Children's Oncology Group AALL0434 Methotrexate Randomization. J Clin Oncol 2018;36(29):2926–34 doi 10.1200/JCO.2018.77.7250. PubMed DOI PMC
Dunsmore KP, Winter SS, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Children's Oncology Group AALL0434: A Phase III Randomized Clinical Trial Testing Nelarabine in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia. J Clin Oncol 2020;38(28):3282–93 doi 10.1200/JCO.20.00256. PubMed DOI PMC
Sato A, Hatta Y, Imai C, Oshima K, Okamoto Y, Deguchi T, et al. Nelarabine, intensive L-asparaginase, and protracted intrathecal therapy for newly diagnosed T-cell acute lymphoblastic leukaemia in children and young adults (ALL-T11): a nationwide, multicenter, phase 2 trial including randomisation in the very high-risk group. Lancet Haematol 2023;10(6):e419–e32 doi 10.1016/S2352-3026(23)00072-8. PubMed DOI
Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Moricke A, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118(8):2077–84 doi 10.1182/blood-2011-03-338707. PubMed DOI
Pui CH, Pei D, Cheng C, Tomchuck SL, Evans SN, Inaba H, et al. Treatment response and outcome of children with T-cell acute lymphoblastic leukemia expressing the gamma-delta T-cell receptor. Oncoimmunology 2019;8(8):1599637 doi 10.1080/2162402X.2019.1599637. PubMed DOI PMC
Matos DM, Rizzatti EG, Fernandes M, Buccheri V, Falcao RP. Gammadelta and alphabeta T-cell acute lymphoblastic leukemia: comparison of their clinical and immunophenotypic features. Haematologica 2005;90(2):264–6. PubMed
Wieduwilt MJ. Ph+ ALL in 2022: is there an optimal approach? Hematology Am Soc Hematol Educ Program 2022;2022(1):206–12 doi 10.1182/hematology.2022000338. PubMed DOI PMC
Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica 2020;105(11):2524–39 doi 10.3324/haematol.2020.247031. PubMed DOI PMC
Tanasi I, Ba I, Sirvent N, Braun T, Cuccuini W, Ballerini P, et al. Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 2019;134(16):1351–5 doi 10.1182/blood.2019001244. PubMed DOI
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017;49(8):1211–8 doi 10.1038/ng.3909. PubMed DOI PMC
Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, et al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet 2017;49(8):1274–81 doi 10.1038/ng.3900. PubMed DOI
Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 2016;13(11):919–22 doi 10.1038/nmeth.3999. PubMed DOI PMC
Montefiori LE, Bendig S, Gu Z, Chen X, Polonen P, Ma X, et al. Enhancer Hijacking Drives Oncogenic BCL11B Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discov 2021;11(11):2846–67 doi 10.1158/2159-8290.CD-21-0145. PubMed DOI PMC
Kimura S, Montefiori L, Iacobucci I, Zhao Y, Gao Q, Paietta EM, et al. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood 2022;139(24):3519–31 doi 10.1182/blood.2022015444. PubMed DOI PMC
Pölönen P, Elsayed A, Di Giacomo D, Montefiori L, Kimura S, Myers J, et al. Comprehensive Genome Characterization of Childhood T-ALL Links Oncogene Activation Mechanism and Subtypes to Prognosis. Blood 2022;140:1727–9 doi 10.1182/blood-2022-167157. DOI
Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360(26):2730–41 doi 10.1056/NEJMoa0900386. PubMed DOI PMC
Jeha S, Pei D, Choi J, Cheng C, Sandlund JT, Coustan-Smith E, et al. Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. J Clin Oncol 2019;37(35):3377–91 doi 10.1200/JCO.19.01692. PubMed DOI PMC
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014;14(8):529–45 doi 10.1038/nri3702. PubMed DOI PMC
Roels J, Kuchmiy A, De Decker M, Strubbe S, Lavaert M, Liang KL, et al. Distinct and temporary-restricted epigenetic mechanisms regulate human alphabeta and gammadelta T cell development. Nat Immunol 2020;21(10):1280–92 doi 10.1038/s41590-020-0747-9. PubMed DOI
Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW, et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 2012;18(3):436–40 doi 10.1038/nm.2610. PubMed DOI PMC
Ciofani M, Zuniga-Pflucker JC. Determining gammadelta versus alphass T cell development. Nat Rev Immunol 2010;10(9):657–63 doi 10.1038/nri2820. PubMed DOI
Chen S, Nagel S, Schneider B, Kaufmann M, Meyer C, Zaborski M, et al. Novel non-TCR chromosome translocations t(3;11)(q25;p13) and t(X;11)(q25;p13) activating LMO2 by juxtaposition with MBNL1 and STAG2. Leukemia 2011;25(10):1632–5 doi 10.1038/leu.2011.119. PubMed DOI
Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 2012;335(6073):1195–200 doi 10.1126/science.1216557. PubMed DOI PMC
King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013;153(7):1552–66 doi 10.1016/j.cell.2013.05.041. PubMed DOI PMC
Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev 2020;61:9–16 doi 10.1016/j.gde.2020.02.024. PubMed DOI
Adane B, Alexe G, Seong BKA, Lu D, Hwang EE, Hnisz D, et al. STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell 2021;39(6):827–44 e10 doi 10.1016/j.ccell.2021.05.007. PubMed DOI PMC
Surdez D, Zaidi S, Grossetete S, Laud-Duval K, Ferre AS, Mous L, et al. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021;39(6):810–26 e9 doi 10.1016/j.ccell.2021.04.001. PubMed DOI
Viny AD, Bowman RL, Liu Y, Lavallee VP, Eisman SE, Xiao W, et al. Cohesin Members Stag1 and Stag2 Display Distinct Roles in Chromatin Accessibility and Topological Control of HSC Self-Renewal and Differentiation. Cell Stem Cell 2019;25(5):682–96 e8 doi 10.1016/j.stem.2019.08.003. PubMed DOI PMC
Ptasinska A, Assi SA, Martinez-Soria N, Imperato MR, Piper J, Cauchy P, et al. Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep 2014;8(6):1974–88 doi 10.1016/j.celrep.2014.08.024. PubMed DOI PMC
Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, et al. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021;6(3) doi 10.1172/jci.insight.142149. PubMed DOI PMC
Bailey ML, O'Neil NJ, van Pel DM, Solomon DA, Waldman T, Hieter P. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol Cancer Ther 2014;13(3):724–32 doi 10.1158/1535-7163.MCT-13-0749. PubMed DOI PMC
Padella A, Ghelli Luserna Di Rora A, Marconi G, Ghetti M, Martinelli G, Simonetti G. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022;15(1):10 doi 10.1186/s13045-022-01228-0. PubMed DOI PMC
Mondal G, Stevers M, Goode B, Ashworth A, Solomon DA. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat Commun 2019;10(1):1686 doi 10.1038/s41467-019-09659-z. PubMed DOI PMC
Robert C, Nagaria PK, Pawar N, Adewuyi A, Gojo I, Meyers DJ, et al. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin. Leuk Res 2016;45:14–23 doi 10.1016/j.leukres.2016.03.007. PubMed DOI PMC
Kruglov O, Wu X, Hwang ST, Akilov OE. The synergistic proapoptotic effect of PARP-1 and HDAC inhibition in cutaneous T-cell lymphoma is mediated via Blimp-1. Blood Adv 2020;4(19):4788–97 doi 10.1182/bloodadvances.2020002049. PubMed DOI PMC
Rowland L, Smart B, Brown A, Dettorre GM, Gocho Y, Hunt J, et al. Ex vivo Drug Sensitivity Imaging-based Platform for Primary Acute Lymphoblastic Leukemia Cells. Bio Protoc 2023;13(15):e4731 doi 10.21769/BioProtoc.4731. PubMed DOI PMC
Bamezai S, Demir D, Pulikkottil AJ, Ciccarone F, Fischbein E, Sinha A, et al. TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 2021;35(2):389–403 doi 10.1038/s41375-020-0864-3. PubMed DOI
Tieppo P, Papadopoulou M, Gatti D, McGovern N, Chan JKY, Gosselin F, et al. The human fetal thymus generates invariant effector gammadelta T cells. J Exp Med 2020;217(3) doi 10.1084/jem.20190580. PubMed DOI PMC
Dong M, Mallet Gauthier E, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2022;289(15):4416–29 doi 10.1111/febs.16045. PubMed DOI
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DHD, et al. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023;220(6) doi 10.1084/jem.20212383. PubMed DOI PMC
Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017;129(9):1124–33 doi 10.1182/blood-2016-09-692582. PubMed DOI
McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH, et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 2010;327(5967):879–83 doi 10.1126/science.1182378. PubMed DOI
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. DNA loop extrusion by human cohesin. Science 2019;366(6471):1338–45 doi 10.1126/science.aaz3418. PubMed DOI
Waldman T. Emerging themes in cohesin cancer biology. Nat Rev Cancer 2020;20(9):504–15 doi 10.1038/s41568-020-0270-1. PubMed DOI
Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, et al. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res 2020;30(4):515–27 doi 10.1101/gr.253211.119. PubMed DOI PMC
Kojic A, Cuadrado A, De Koninck M, Gimenez-Llorente D, Rodriguez-Corsino M, Gomez-Lopez G, et al. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat Struct Mol Biol 2018;25(6):496–504 doi 10.1038/s41594-018-0070-4. PubMed DOI PMC
Smith JS, Lappin KM, Craig SG, Liberante FG, Crean CM, McDade SS, et al. Chronic loss of STAG2 leads to altered chromatin structure contributing to de-regulated transcription in AML. J Transl Med 2020;18(1):339 doi 10.1186/s12967-020-02500-y. PubMed DOI PMC
Chu Z, Gu L, Hu Y, Zhang X, Li M, Chen J, et al. STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nat Commun 2022;13(1):1859 doi 10.1038/s41467-022-29541-9. PubMed DOI PMC
Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y, et al. Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents - A Potential Therapy for Cancer. Cancer Cell 2016;30(4):637–50 doi 10.1016/j.ccell.2016.09.002. PubMed DOI PMC
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434(7035):917–21 doi 10.1038/nature03445. PubMed DOI
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005;434(7035):913–7 doi 10.1038/nature03443. PubMed DOI
Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol 2016;34(22):2591–601 doi 10.1200/JCO.2015.64.6364. PubMed DOI
Olivier-Gougenheim L, Arfeuille C, Suciu S, Sirvent N, Plat G, Ferster A, et al. Pediatric randomized trial EORTC CLG 58951: Outcome for adolescent population with acute lymphoblastic leukemia. Hematol Oncol 2020;38(5):763–72 doi 10.1002/hon.2791. PubMed DOI
Buchmann S, Schrappe M, Baruchel A, Biondi A, Borowitz M, Campbell M, et al. Remission, treatment failure, and relapse in pediatric ALL: an international consensus of the Ponte-di-Legno Consortium. Blood 2022;139(12):1785–93 doi 10.1182/blood.2021012328. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25(14):1754–60 doi 10.1093/bioinformatics/btp324. PubMed DOI PMC
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012;28(18):i333–i9 doi 10.1093/bioinformatics/bts378. PubMed DOI PMC
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016;32(8):1220–2 doi 10.1093/bioinformatics/btv710. PubMed DOI
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011;29(1):24–6 doi 10.1038/nbt.1754. PubMed DOI PMC
Chen X, Gupta P, Wang J, Nakitandwe J, Roberts K, Dalton JD, et al. CONSERTING: integrating copy-number analysis with structural-variation detection. Nat Methods 2015;12(6):527–30 doi 10.1038/nmeth.3394. PubMed DOI PMC
Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U, et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 2012;40(9):e69 doi 10.1093/nar/gks003. PubMed DOI PMC
Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet 2022;54(9):1376–89 doi 10.1038/s41588-022-01159-z. PubMed DOI PMC
Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 2019;51(2):296–307 doi 10.1038/s41588-018-0315-5. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15–21 doi 10.1093/bioinformatics/bts635. PubMed DOI PMC
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31(2):166–9 doi 10.1093/bioinformatics/btu638. PubMed DOI PMC
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28(6):882–3 doi 10.1093/bioinformatics/bts034. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550 doi 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2(3):100141 doi 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Barinka J, Hu Z, Wang L, Wheeler DA, Rahbarinia D, McLeod C, et al. RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data. Leukemia 2022;36(6):1492–8 doi 10.1038/s41375-022-01547-8. PubMed DOI PMC
Juric I, Yu M, Abnousi A, Raviram R, Fang R, Zhao Y, et al. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput Biol 2019;15(4):e1006982 doi 10.1371/journal.pcbi.1006982. PubMed DOI PMC
Dickerson KM, Qu C, Gao Q, Iacobucci I, Gu Z, Yoshihara H, et al. ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia. Blood Cancer Discov 2022;3(3):240–63 doi 10.1158/2643-3230.BCD-21-0163. PubMed DOI PMC
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008;9(9):R137 doi 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010;28(5):495–501 doi 10.1038/nbt.1630. PubMed DOI PMC
Narina S, Connelly JP, Pruett-Miller SM. High-Throughput Analysis of CRISPR-Cas9 Editing Outcomes in Cell and Animal Models Using CRIS.py. Methods Mol Biol 2023;2631:155–82 doi 10.1007/978-1-0716-2990-1_6. PubMed DOI PMC
Connelly JP, Pruett-Miller SM. CRIS.py: A Versatile and High-throughput Analysis Program for CRISPR-based Genome Editing. Sci Rep 2019;9(1):4194 doi 10.1038/s41598-019-40896-w. PubMed DOI PMC
Chang Y, Min J, Jarusiewicz JA, Actis M, Yu-Chen Bradford S, Mayasundari A, et al. Degradation of Janus kinases in CRLF2-rearranged acute lymphoblastic leukemia. Blood 2021;138(23):2313–26 doi 10.1182/blood.2020006846. PubMed DOI PMC
Chang Y, Keramatnia F, Ghate PS, Nishiguchi G, Gao Q, Iacobucci I, et al. The orally bioavailable GSPT1/2 degrader SJ6986 exhibits in vivo efficacy in acute lymphoblastic leukemia. Blood 2023;142(7):629–42 doi 10.1182/blood.2022017813. PubMed DOI PMC
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res 2022;50(W1):W739–W43 doi 10.1093/nar/gkac382. PubMed DOI PMC