Remission, treatment failure, and relapse in pediatric ALL: an international consensus of the Ponte-di-Legno Consortium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P30 CA021765
NCI NIH HHS - United States
U10 CA180886
NCI NIH HHS - United States
U10 CA180899
NCI NIH HHS - United States
PubMed
34192312
PubMed Central
PMC8952186
DOI
10.1182/blood.2021012328
PII: S0006-4971(21)01297-0
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie * farmakoterapie terapie MeSH
- dítě MeSH
- indukce remise MeSH
- konsensus MeSH
- lidé MeSH
- neúspěšná terapie MeSH
- pons MeSH
- recidiva MeSH
- reziduální nádor diagnóza MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Comparison of treatment strategies in de novo pediatric acute lymphoblastic leukemia (ALL) requires standardized measures of efficacy. Key parameters that define disease-related events, including complete remission (CR), treatment failure (TF; not achieving CR), and relapse (loss of CR) require an updated consensus incorporating modern diagnostics. We collected the definitions of CR, TF, and relapse from recent and current pediatric clinical trials for the treatment of ALL, including the key components of response evaluation (timing, anatomic sites, detection methods, and thresholds) and found significant heterogeneity, most notably in the definition of TF. Representatives of the major international ALL clinical trial groups convened to establish consensus definitions. CR should be defined at a time point no earlier than at the end of induction and should include the reduction of blasts below a specific threshold in bone marrow and extramedullary sites, incorporating minimal residual disease (MRD) techniques for marrow evaluations. TF should be defined as failure to achieve CR by a prespecified time point in therapy. Relapse can only be defined in patients who have achieved CR and must include a specific threshold of leukemic cells in the bone marrow confirmed by MRD, the detection of central nervous system leukemia, or documentation of extramedullary disease. Definitions of TF and relapse should harmonize with eligibility criteria for clinical trials in relapsed/refractory ALL. These consensus definitions will enhance the ability to compare outcomes across pediatric ALL trials and facilitate development of future international collaborative trials.
Chilean National Pediatric Oncology Group Santiago Chile
Department of Oncology St Jude Children's Research Hospital Memphis TN
Department of Pediatric Oncology Dana Farber Cancer Institute Boston MA
Department of Pediatrics Hokkaido University Graduate School of Medicine Sapporo Japan
Department of Pediatrics University Medical Center Schleswig Holstein Kiel Germany
Great Ormond Street Hospital London United Kingdom; and
Japan Children's Cancer Group Japan Sapporo Japan
Johns Hopkins Kimmel Cancer Center Baltimore MD
Princess Maxima Center for Pediatric Oncology Utrecht The Netherlands
University Hospital Motol 2nd Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Smith M, Arthur D, Camitta B, et al. . Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18-24. PubMed
Pui CH, Yang JJ, Hunger SP, et al. . Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27): 2938-2948. PubMed PMC
Schrappe M, Nachman J, Hunger S, et al. . ‘Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985-2000). Leukemia. 2010;24(2):253-254. PubMed
Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [correction published in Blood. 2016;128(3):462-463]. Blood. 2016;127(20):2391-2405. PubMed
van der Does-van den Berg A, Bartram CR, Basso G, et al. . Minimal requirements for the diagnosis, classification, and evaluation of the treatment of childhood acute lymphoblastic leukemia (ALL) in the “BFM Family” Cooperative Group. Med Pediatr Oncol. 1992;20(6):497-505. PubMed
Coustan-Smith E, Sancho J, Hancock ML, et al. . Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2691-2696. PubMed
Szczepański T, Orfão A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001;2(7):409-417. PubMed
Nyvold C, Madsen HO, Ryder LP, et al. ; Nordic Society for Pediatric Hematology and Oncology . Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood. 2002;99(4):1253-1258. PubMed
Cheson BD, Fisher RI, Barrington SF, et al. ; United Kingdom National Cancer Research Institute . Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014; 32(27):3059-3068. PubMed PMC
Cheson BD, Cassileth PA, Head DR, et al. . Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990;8(5):813-819. PubMed
Eisenhauer EA, Therasse P, Bogaerts J, et al. . New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-247. PubMed
Schrappe M. Treatment protocol for children and adolescents with acute lymphoblastic leukemia—AIEOP-BFM ALL. Available at: https://ClinicalTrials.gov/show/NCT03643276.
Schmiegelow K. ALL2008 protocol for childhood acute lymphoblastic leukemia intermittent versus continuous PEG asparaginase. Available at: https://ClinicalTrials.gov/show/NCT00819351.
Mc Neer JL. Inotuzumab ozogamicin and post-induction chemotherapy in treating patients with high-risk B-ALL, mixed phenotype acute leukemia, and B-LLy. Available at: https://ClinicalTrials.gov/show/NCT03959085.
NCI . A study to investigate blinatumomab in combination with chemotherapy in patients with newly diagnosed B-lymphoblastic leukemia. Available at: https://ClinicalTrials.gov/show/NCT03914625.
Baruchel A, Bertrand Y. A French protocol for the treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Available at: https://ClinicalTrials.gov/show/NCT02716233.
Biondi A, Silverman L. Imatinib mesylate and combination chemotherapy in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Available at: https://ClinicalTrials.gov/show/NCT03007147.
Koh K, Kato M, Saito AM, et al. . Phase II/III study in children and adolescents with newly diagnosed B-cell precursor acute lymphoblastic leukemia: protocol for a nationwide multicenter trial in Japan. Jpn J Clin Oncol. 2018;48(7):684-691. PubMed PMC
UKALL . United Kingdom Trial for children and young adults with Acute lymphoblastic Leukaemia and Lymphoma 2011; 2012.
SEHOP/PETHEMA . Tratamiento de la Leucemia Aguda Linfoblástica de Nuevo Diagnóstico; 2014.
DCOG . Protocol ALL-11: Treatment study protocol of the Dutch Childhood Oncology Group for children and adolescents (1-19 year) with newly diagnosed acute 2012.
Heyman M. A treatment study protocol for participants 1-45 years with acute lymphoblastic leukaemia. Available at: https://ClinicalTrials.gov/show/NCT04307576.
Biondi A, Silverman L. International phase 3 trial in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) testing imatinib in combination with two different cytotoxic chemotherapy backbones. Available at: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2017-000705-20.
Liang D-C. TPOG-ALL-2013. 2012.
Cario G, Escherich G, Möricke A, et al. . New strategies for treatment of children and adolescents with acute lymphoblastic leukemia. Monatsschr Kinderheilkd. 2021; 169(1):20-29.
Silverman LB. Treatment of newly diagnosed acute lymphoblastic leukemia in children and adolescents. Available at: https://ClinicalTrials.gov/show/NCT03020030.
Jeha S, Pei D, Choi J, et al. . Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude total therapy study 16. J Clin Oncol. 2019; 37(35):3377-3391. PubMed PMC
Bennett JM, Catovsky D, Daniel MT, et al. . Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976; 33(4):451-458. PubMed
Bürger B, Zimmermann M, Mann G, et al. . Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol. 2003;21(2):184-188. PubMed
Mastrangelo R, Poplack D, Bleyer A, Riccardi R, Sather H, D’Angio G. Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol. 1986;14(3):191-194. PubMed
Mahmoud HH, Rivera GK, Hancock ML, et al. . Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med. 1993;329(5):314-319. PubMed
Vora A, Andreano A, Pui CH, et al. . Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy. J Clin Oncol. 2016;34(9):919-926. PubMed PMC
Dworzak MN, Panzer-Grümayer ER. Flow cytometric detection of minimal residual disease in acute lymphoblastic leukemia. Leuk Lymphoma. 2003;44(9):1445-1455. PubMed
van der Velden VH, Cazzaniga G, Schrauder A, et al. ; European Study Group on MRD detection in ALL (ESG-MRD-ALL) . Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604-611. PubMed
Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306-6315. PubMed
Shago M. Recurrent cytogenetic abnormalities in acute lymphoblastic leukemia. Methods Mol Biol. 2017;1541: 257-278. PubMed
Gajjar A, Harrison PL, Sandlund JT, et al. . Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96(10):3381-3384. PubMed
Thastrup M, Marquart HV, Levinsen M, et al. ; Nordic Society of Pediatric Hematology and Oncology (NOPHO) . Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology study [correction published in Leukemia. 2020;34:2822]. Leukemia. 2020;34(2):336-346. PubMed
Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000;14(5):783-785. PubMed
van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015; 125(26):3996-4009. PubMed PMC
Brown P. Blinatumomab for MRD+ B-ALL: the evidence strengthens. Blood. 2018;131(14):1497-1498. PubMed
Locatelli F, Whitlock JA, Peters C, et al. . Blinatumomab versus historical standard therapy in pediatric patients with relapsed/refractory Ph-negative B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(9):2473-2478. PubMed PMC
Neale GA, Coustan-Smith E, Stow P, et al. . Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004; 18(5):934-938. PubMed
Outcome for Children and Young Adults With T-Cell ALL and Induction Failure in Contemporary Trials