Remission, treatment failure, and relapse in pediatric ALL: an international consensus of the Ponte-di-Legno Consortium

. 2022 Mar 24 ; 139 (12) : 1785-1793.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34192312

Grantová podpora
P30 CA021765 NCI NIH HHS - United States
U10 CA180886 NCI NIH HHS - United States
U10 CA180899 NCI NIH HHS - United States

Odkazy

PubMed 34192312
PubMed Central PMC8952186
DOI 10.1182/blood.2021012328
PII: S0006-4971(21)01297-0
Knihovny.cz E-zdroje

Comparison of treatment strategies in de novo pediatric acute lymphoblastic leukemia (ALL) requires standardized measures of efficacy. Key parameters that define disease-related events, including complete remission (CR), treatment failure (TF; not achieving CR), and relapse (loss of CR) require an updated consensus incorporating modern diagnostics. We collected the definitions of CR, TF, and relapse from recent and current pediatric clinical trials for the treatment of ALL, including the key components of response evaluation (timing, anatomic sites, detection methods, and thresholds) and found significant heterogeneity, most notably in the definition of TF. Representatives of the major international ALL clinical trial groups convened to establish consensus definitions. CR should be defined at a time point no earlier than at the end of induction and should include the reduction of blasts below a specific threshold in bone marrow and extramedullary sites, incorporating minimal residual disease (MRD) techniques for marrow evaluations. TF should be defined as failure to achieve CR by a prespecified time point in therapy. Relapse can only be defined in patients who have achieved CR and must include a specific threshold of leukemic cells in the bone marrow confirmed by MRD, the detection of central nervous system leukemia, or documentation of extramedullary disease. Definitions of TF and relapse should harmonize with eligibility criteria for clinical trials in relapsed/refractory ALL. These consensus definitions will enhance the ability to compare outcomes across pediatric ALL trials and facilitate development of future international collaborative trials.

Childhood Cancer Research Unit Karolinska Institutet Astrid Lindgren's Children's Hospital Karolinska University Hospital Stockholm Sweden

Children's Cancer Research Institute St Anna Children's Hospital Department of Pediatrics Medical University of Vienna Vienna Austria

Chilean National Pediatric Oncology Group Santiago Chile

Clinic of Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Oncology St Jude Children's Research Hospital Memphis TN

Department of Pediatric Hematology and Oncology Institute of Pediatrics Faculty of Medicine University of Debrecen Debrecen Hungary

Department of Pediatric Hematology and Oncology Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù Sapienza Università di Roma Rome Italy

Department of Pediatric Oncology Dana Farber Cancer Institute Boston MA

Department of Pediatrics and Adolescent Medicine University Hospital Rigshospitalet Institute of Clinical Medicine Faculty of Medicine University of Copenhagen Copenhagen Denmark

Department of Pediatrics and Pediatric Surgery Hospital de Niños Roberto del Río Facultad de Medicina Universidad de Chile Santiago Chile

Department of Pediatrics and Tettamanti Research Center Fondazione MBBM Ospedale San Gerardo University of Milano Bicocca Monza Italy

Department of Pediatrics Center for Childhood Cancer Research Children's Hospital of Philadelphia Philadelphia PA

Department of Pediatrics Hokkaido University Graduate School of Medicine Sapporo Japan

Department of Pediatrics University Medical Center Schleswig Holstein Kiel Germany

Division of Pediatric Hematology Oncology MacKay Memorial Hospital MacKay Children's Hospital Taipei Taiwan

Great Ormond Street Hospital London United Kingdom; and

Japan Children's Cancer Group Japan Sapporo Japan

Johns Hopkins Kimmel Cancer Center Baltimore MD

Pediatric Hematology and Oncology Department Hospital Sant Joan de Déu de Barcelona Institut de Recerca Sant Joan de Déu Barcelona Spain

Pediatric Hematology Immunology Department University Hospital Robert Debré Assistance Publique Hôpitaux de Paris Université de Paris Paris

Princess Maxima Center for Pediatric Oncology Utrecht The Netherlands

Société Française de Lutte contre les Cancers et Leucémies de l'Enfant et de l'Adolescent Paris France

Translational and Clinical Research Institute Newcastle University Centre for Cancer Newcastle upon Tyne United Kingdom

University Hospital Motol 2nd Faculty of Medicine Charles University Prague Czech Republic

Zobrazit více v PubMed

Smith M, Arthur D, Camitta B, et al. . Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18-24. PubMed

Pui CH, Yang JJ, Hunger SP, et al. . Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27): 2938-2948. PubMed PMC

Schrappe M, Nachman J, Hunger S, et al. . ‘Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985-2000). Leukemia. 2010;24(2):253-254. PubMed

Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [correction published in Blood. 2016;128(3):462-463]. Blood. 2016;127(20):2391-2405. PubMed

van der Does-van den Berg A, Bartram CR, Basso G, et al. . Minimal requirements for the diagnosis, classification, and evaluation of the treatment of childhood acute lymphoblastic leukemia (ALL) in the “BFM Family” Cooperative Group. Med Pediatr Oncol. 1992;20(6):497-505. PubMed

Coustan-Smith E, Sancho J, Hancock ML, et al. . Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2691-2696. PubMed

Szczepański T, Orfão A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001;2(7):409-417. PubMed

Nyvold C, Madsen HO, Ryder LP, et al. ; Nordic Society for Pediatric Hematology and Oncology . Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood. 2002;99(4):1253-1258. PubMed

Cheson BD, Fisher RI, Barrington SF, et al. ; United Kingdom National Cancer Research Institute . Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014; 32(27):3059-3068. PubMed PMC

Cheson BD, Cassileth PA, Head DR, et al. . Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990;8(5):813-819. PubMed

Eisenhauer EA, Therasse P, Bogaerts J, et al. . New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-247. PubMed

Schrappe M. Treatment protocol for children and adolescents with acute lymphoblastic leukemia—AIEOP-BFM ALL. Available at: https://ClinicalTrials.gov/show/NCT03643276.

Schmiegelow K. ALL2008 protocol for childhood acute lymphoblastic leukemia intermittent versus continuous PEG asparaginase. Available at: https://ClinicalTrials.gov/show/NCT00819351.

Mc Neer JL. Inotuzumab ozogamicin and post-induction chemotherapy in treating patients with high-risk B-ALL, mixed phenotype acute leukemia, and B-LLy. Available at: https://ClinicalTrials.gov/show/NCT03959085.

NCI . A study to investigate blinatumomab in combination with chemotherapy in patients with newly diagnosed B-lymphoblastic leukemia. Available at: https://ClinicalTrials.gov/show/NCT03914625.

Baruchel A, Bertrand Y. A French protocol for the treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Available at: https://ClinicalTrials.gov/show/NCT02716233.

Biondi A, Silverman L. Imatinib mesylate and combination chemotherapy in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Available at: https://ClinicalTrials.gov/show/NCT03007147.

Koh K, Kato M, Saito AM, et al. . Phase II/III study in children and adolescents with newly diagnosed B-cell precursor acute lymphoblastic leukemia: protocol for a nationwide multicenter trial in Japan. Jpn J Clin Oncol. 2018;48(7):684-691. PubMed PMC

UKALL . United Kingdom Trial for children and young adults with Acute lymphoblastic Leukaemia and Lymphoma 2011; 2012.

SEHOP/PETHEMA . Tratamiento de la Leucemia Aguda Linfoblástica de Nuevo Diagnóstico; 2014.

DCOG . Protocol ALL-11: Treatment study protocol of the Dutch Childhood Oncology Group for children and adolescents (1-19 year) with newly diagnosed acute 2012.

Heyman M. A treatment study protocol for participants 1-45 years with acute lymphoblastic leukaemia. Available at: https://ClinicalTrials.gov/show/NCT04307576.

Biondi A, Silverman L. International phase 3 trial in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) testing imatinib in combination with two different cytotoxic chemotherapy backbones. Available at: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2017-000705-20.

Liang D-C. TPOG-ALL-2013. 2012.

Cario G, Escherich G, Möricke A, et al. . New strategies for treatment of children and adolescents with acute lymphoblastic leukemia. Monatsschr Kinderheilkd. 2021; 169(1):20-29.

Silverman LB. Treatment of newly diagnosed acute lymphoblastic leukemia in children and adolescents. Available at: https://ClinicalTrials.gov/show/NCT03020030.

Jeha S, Pei D, Choi J, et al. . Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude total therapy study 16. J Clin Oncol. 2019; 37(35):3377-3391. PubMed PMC

Bennett JM, Catovsky D, Daniel MT, et al. . Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976; 33(4):451-458. PubMed

Bürger B, Zimmermann M, Mann G, et al. . Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol. 2003;21(2):184-188. PubMed

Mastrangelo R, Poplack D, Bleyer A, Riccardi R, Sather H, D’Angio G. Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol. 1986;14(3):191-194. PubMed

Mahmoud HH, Rivera GK, Hancock ML, et al. . Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med. 1993;329(5):314-319. PubMed

Vora A, Andreano A, Pui CH, et al. . Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy. J Clin Oncol. 2016;34(9):919-926. PubMed PMC

Dworzak MN, Panzer-Grümayer ER. Flow cytometric detection of minimal residual disease in acute lymphoblastic leukemia. Leuk Lymphoma. 2003;44(9):1445-1455. PubMed

van der Velden VH, Cazzaniga G, Schrauder A, et al. ; European Study Group on MRD detection in ALL (ESG-MRD-ALL) . Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604-611. PubMed

Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306-6315. PubMed

Shago M. Recurrent cytogenetic abnormalities in acute lymphoblastic leukemia. Methods Mol Biol. 2017;1541: 257-278. PubMed

Gajjar A, Harrison PL, Sandlund JT, et al. . Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96(10):3381-3384. PubMed

Thastrup M, Marquart HV, Levinsen M, et al. ; Nordic Society of Pediatric Hematology and Oncology (NOPHO) . Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology study [correction published in Leukemia. 2020;34:2822]. Leukemia. 2020;34(2):336-346. PubMed

Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000;14(5):783-785. PubMed

van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015; 125(26):3996-4009. PubMed PMC

Brown P. Blinatumomab for MRD+ B-ALL: the evidence strengthens. Blood. 2018;131(14):1497-1498. PubMed

Locatelli F, Whitlock JA, Peters C, et al. . Blinatumomab versus historical standard therapy in pediatric patients with relapsed/refractory Ph-negative B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(9):2473-2478. PubMed PMC

Neale GA, Coustan-Smith E, Stow P, et al. . Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004; 18(5):934-938. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...