• This record comes from PubMed

Associations between the presence of specific antibodies to the West Nile Virus infection and candidate genes in Romanian horses from the Danube delta

. 2019 Aug ; 46 (4) : 4453-4461. [epub] 20190607

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
CZ.1.05/1.1.00/02 Central European Institute of Technology
NPU LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 31175514
DOI 10.1007/s11033-019-04900-w
PII: 10.1007/s11033-019-04900-w
Knihovny.cz E-resources

The West Nile virus (WNV) is a mosquito-borne flavivirus causing meningoencephalitis in humans and animals. Due to their particular susceptibility to WNV infection, horses serve as a sentinel species. In a population of Romanian semi-feral horses living in the Danube delta region, we have analyzed the distribution of candidate polymorphic genetic markers between anti WNV-IgG seropositive and seronegative horses. Thirty-six SNPs located in 28 immunity-related genes and 26 microsatellites located in the MHC and LY49 complex genomic regions were genotyped in 57 seropositive and 32 seronegative horses. The most significant association (pcorr < 0.0002) was found for genotypes composed of markers of the SLC11A1 and TLR4 genes. Markers of five other candidate genes (ADAM17, CXCR3, IL12A, MAVS, TNFA), along with 5 MHC class I and LY49-linked microsatellites were also associated with the WNV antibody status in this model horse population. The OAS1 gene, previously associated with WNV-induced clinical disease, was not associated with the presence of anti-WNV antibodies.

See more in PubMed

Front Vet Sci. 2015 Dec 14;2:76 PubMed

Emerg Infect Dis. 2001 Jul-Aug;7(4):665-9 PubMed

Vet Microbiol. 2013 Nov 29;167(1-2):168-80 PubMed

Am J Epidemiol. 2006 Apr 1;163(7):670-5 PubMed

EMBO Rep. 2015 Nov;16(11):1482-500 PubMed

Vector Borne Zoonotic Dis. 2007 Fall;7(3):403-10 PubMed

Vet Immunol Immunopathol. 2013 Apr 15;152(3-4):260-8 PubMed

J Immunol. 2013 Apr 15;190(8):4263-73 PubMed

Sci Transl Med. 2015 Sep 9;7(304):304ra142 PubMed

Viruses. 2013 Sep 20;5(9):2298-310 PubMed

Viruses. 2014 Feb 06;6(2):606-23 PubMed

Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11311-6 PubMed

PLoS One. 2016 Nov 3;11(11):e0165952 PubMed

Curr Opin Virol. 2015 Apr;11:1-6 PubMed

Arch Virol. 2005 Apr;150(4):637-57 PubMed

Mamm Genome. 2011 Feb;22(1-2):100-10 PubMed

Mol Biol Rep. 2019 Aug;46(4):4453-4461 PubMed

J Biol Chem. 2015 Jul 31;290(31):18984-90 PubMed

World J Virol. 2013 May 12;2(2):49-56 PubMed

Emerg Infect Dis. 2002 Apr;8(4):380-6 PubMed

Curr Neuropharmacol. 2019;17(2):142-150 PubMed

PLoS One. 2010 May 07;5(5):e10537 PubMed

Cytokine. 2016 Dec;88:184-192 PubMed

Eur J Immunol. 2008 Nov;38(11):3060-7 PubMed

Biomed Res Int. 2015;2015:376230 PubMed

Mol Biol Rep. 2016 Dec;43(12):1451-1463 PubMed

J Infect Dis. 2002 Dec 15;186(12):1808-14 PubMed

BMC Infect Dis. 2018 Jun 22;18(1):282 PubMed

Nat Rev Genet. 2006 Oct;7(10):781-91 PubMed

Euro Surveill. 2011 Jan 13;16(2): PubMed

Sci Transl Med. 2015 Jul 22;7(297):297ra115 PubMed

Vector Borne Zoonotic Dis. 2014 May;14(5):330-7 PubMed

Am J Hum Genet. 2005 May;76(5):887-93 PubMed

Adv Clin Exp Med. 2018 Jun;27(6):849-856 PubMed

Ecohealth. 2016 Dec;13(4):796-807 PubMed

J Leukoc Biol. 2003 Aug;74(2):287-94 PubMed

Viruses. 2013 Oct 30;5(11):2643-58 PubMed

Euro Surveill. 2015 May 21;20(20): PubMed

PLoS One. 2013 May 28;8(5):e64736 PubMed

HLA. 2018 Apr;91(4):271-279 PubMed

Am J Hum Genet. 2007 Sep;81(3):559-75 PubMed

Immunogenetics. 2016 May;68(5):353-64 PubMed

Philos Trans R Soc Lond B Biol Sci. 2012 Mar 19;367(1590):800-11 PubMed

Microb Pathog. 2017 Feb;103:71-79 PubMed

Res Vet Sci. 2019 Jun;124:284-292 PubMed

Acta Med Iran. 2014;52(6):418-23 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...