Biochemical responses and oxidative stress in Francisella tularensis infection: a European brown hare model

. 2011 Jan 13 ; 53 (1) : 2. [epub] 20110113

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21232117

BACKGROUND: The aim of the present study was to investigate biochemical and oxidative stress responses to experimental F. tularensis infection in European brown hares, an important source of human tularemia infections. METHODS: For these purposes we compared the development of an array of biochemical parameters measured in blood plasma using standard procedures of dry chemistry as well as electrochemical devices following a subcutaneous infection with a wild Francisella tularensis subsp. holarctica strain (a single dose of 2.6 × 10⁹ CFU pro toto). RESULTS: Subcutaneous inoculation of a single dose with 2.6 × 10⁹ colony forming units of a wild F. tularensis strain pro toto resulted in the death of two out of five hares. Plasma chemistry profiles were examined on days 2 to 35 post-infection. When compared to controls, the total protein, urea, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased, while albumin, glucose and amylase were decreased. Both uric and ascorbic acids and glutathione dropped on day 2 and then increased significantly on days 6 to 12 and 6 to 14 post-inoculation, respectively. There was a two-fold increase in lipid peroxidation on days 4 to 8 post-inoculation. CONCLUSIONS: Contrary to all expectations, the present study demonstrates that the European brown hare shows relatively low susceptibility to tularemia. Therefore, the circumstances of tularemia in hares under natural conditions should be further studied.

Zobrazit více v PubMed

Kaysser P, Seibold E, Mätz-Rensing K, Pfeffer M, Essbauer S, Splettstoesser WD. Re-emergence of tularemia in Germany: Presence of Francisella tularensis in different rodent species in endemic areas. BMC Infect Dis. 2008;8:157. doi: 10.1186/1471-2334-8-157. PubMed DOI PMC

Petersen JM, Schriefer ME. Tularemia: emergence/re-emergence. Vet Res. 2005;36:455–467. doi: 10.1051/vetres:2005006. PubMed DOI

Pohanka M, Hubalek M, Neubauerova V, Macela A, Faldyna M, Bandouchova H, Pikula J. Current and emerging assays for Francisella tularensis detection. Vet Med-Czech. 2008;53:585–594.

Pikula J, Treml F, Beklova M, Holesovska Z, Pikulova J. Ecological conditions of natural foci of tularaemia in the Czech Republic. Eur J Epidemiol. 2003;18:1091–1095. doi: 10.1023/A:1026141619810. PubMed DOI

Cerny Z. Changes of the epidemiology and the clinical picture of tularemia in Southern Moravia (the Czech Republic) during the period 1936-1999. Eur J Epidemiol. 2001;17:637–642. doi: 10.1023/A:1015551213151. PubMed DOI

Ellis J, Oyston PCF, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15:631–646. doi: 10.1128/CMR.15.4.631-646.2002. PubMed DOI PMC

Hubalek Z, Treml F, Halouzka J, Juricova Z, Hunady M, Janik V. Frequent isolation of Francisella tularensis from Dermacentor reticulatus ticks in an enzootic focus of tularaemia. Med Vet Entomol. 1996;10:241–246. doi: 10.1111/j.1365-2915.1996.tb00737.x. PubMed DOI

Gyuranecz M, Szeredi L, Makrai L, Fodor L, Meszaros ÁR, Szépe B, Füleki M, Erdélyi K. Tularemia of European brown hare (Lepus europaeus): a pathological, histopathological, and immunohistochemical study. Vet Pathol. 2010;47:958–963. doi: 10.1177/0300985810369902. PubMed DOI

Mueller W, Bocklisch H, Schueler G, Hotzel H, Neubauer H, Otto P. Detection of Francisella tularensis subsp. holarctica in a European brown hare (Lepus europaeus) in Thuringia, Germany. Vet Microbiol. 2007;123:225–229. doi: 10.1016/j.vetmic.2007.03.025. PubMed DOI

Pikula J, Beklova M, Holesovska Z, Treml F. Ecology of European brown hare and distribution of natural foci of tularaemia in the Czech Republic. Acta Vet Brno. 2004;73:267–273. doi: 10.2754/avb200473020267. DOI

Treml F, Pikula J, Bandouchova H, Horakova J. European brown hare as a potential source of zoonotic agents. Vet Med-Czech. 2007;52:451–456.

Pikula J, Beklova M, Holesovska Z, Treml F. Prediction of possible distribution of tularemia in the Czech Republic. Vet Med-Czech. 2004;49:61–64.

Hauri AM, Hofstetter I, Seibold E, Kaysser P, Eckert J, Neubauer H, Splettstoesser WD. Investigating an airborne tularemia outbreak, Germany. Emerg Infect Dis. 2010;16:238–243. PubMed PMC

Rasmussen JW, Cello J, Gil H, Forestal CA, Furie MB, Thanassi DG, Benach JL. Mac-1(+) cells are the predominant subset in the early hepatic lesions of mice infected with Francisella tularensis. Infec Immun. 2006;74:6590–6598. doi: 10.1128/IAI.00868-06. PubMed DOI PMC

Andersson H, Hartmanova B, Ryden P, Noppa L, Naslund L, Sjostedt A. A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Med Microbiol. 2006;55:1023–1033. doi: 10.1099/jmm.0.46553-0. PubMed DOI

Chevion S, Roberts MA, Chevion M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radical Bio Med. 2000;28:860–870. doi: 10.1016/S0891-5849(00)00178-7. PubMed DOI

Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathogen. 2009;5(1):e1000284. doi: 10.1371/journal.ppat.1000284. PubMed DOI PMC

Bandouchova H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis. 2009;9:101. doi: 10.1186/1471-2334-9-101. PubMed DOI PMC

Bandouchova H, Sedlackova J, Hubalek M, Pohanka M, Peckova L, Treml F, Vitula F, Pikula J. Susceptibility of selected murine and microtine species to infection by a wild-strain Francisella tularensis subsp. holarctica. Vet Med-Czech. 2009;54:64–74.

Chen WX, KuoLee R, Shen H, Conlan JW. Susceptibility of immunodeficient mice to aerosol and systemic infection with virulent strains of Francisella tularensis. Microb Pathogenesis. 2004;36:311–318. doi: 10.1016/j.micpath.2004.02.003. PubMed DOI

Conlan JW, Chen WX, Shen H, Webb A, KuoLee R. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb Pathogenesis. 2003;34:239–248. doi: 10.1016/S0882-4010(03)00046-9. PubMed DOI

Pohanka M. Evaluation of immunoglobulin production during tularaemia infection in BALB/c mouse model. Acta Vet Brno. 2007;76:579–584. doi: 10.2754/avb200776040579. DOI

Pohanka M, Skladal P. Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanal. 2007;19:2507–2512. doi: 10.1002/elan.200704003. DOI

Mörner T, Sandström G, Mattsson R, Nilsson PE. Infections with Franciselly tularensis biovar palaearctica in hares (Lepus timidus, Lepus europaeus) from Sweden. J Wildlife Dis. 1988;24:422–433. PubMed

Pohanka M, Treml F, Hubalek M, Bandouchova H, Beklova M, Pikula J. Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected European brown hares (Lepus europaeus) Sensors - Basel. 2007;7:2825–2834. PubMed PMC

Krivinka J. Patho-anatomical changes in animals infected with tularaemia. Spisy Vysoke skoly zverolekarske Brno. 1939;16:131–261. (In Czech, with a summary in German)

Hubalek M, Hernychova L, Brychta M, Lenco J, Zechovska J, Stulik J. Comparative proteome analysis of cellular proteins extracted from highly virulent Francisella tularensis ssp tularensis and less virulent F. tularensis ssp holarctica and F. tularensis ssp mediaasiatica. Proteomics. 2004;4:3048–3060. doi: 10.1002/pmic.200400939. PubMed DOI

Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH. Manual of Clinical Microbiology. 8. Washington: ASM Press; 2003.

Adam V, Mikelova R, Hubalek J, Hanustiak P, Beklova M, Hodek P, Horna A, Trnkova L, Stiborova M, Zeman L, Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors - Basel. 2007;7:2402–2418. PubMed PMC

Paskova V, Adamovsky O, Pikula J, Skocovska B, Bandouchova H, Horakova J, Babica P, Marsalek B, Hilscherova K. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ. 2008;398:34–47. doi: 10.1016/j.scitotenv.2008.03.001. PubMed DOI

Olsufjev NG, Dunajeva TN. Natural focality, epidemiology and prophylaxis of tularaemia. 1. Moskva: Medicina; 1970. (In Russian)

Tripp RJ, Tabares A, Wang H, Lanza-Jacoby S. Altered hepatic production of apolipoproteins B and E in the fasted septic rat: factors in the development of hypertriglyceridemia. J Surg Res. 1993;55:465–472. doi: 10.1006/jsre.1993.1170. PubMed DOI

Pikula J, Adam V, Bandouchova H, Beklova M, Horakova J, Horakova H, Kizek R, Krizkova S, Skocovska B, Supalkova V, Svoboda M, Treml F, Vitula F. Blood coagulation times in the European brown hare. Vet Clin Pathol. 2007;36:361–363. doi: 10.1111/j.1939-165X.2007.tb00442.x. PubMed DOI

Marco I, Cuenca R, Pastor J, Geparde R, Lavin S. Hematology and serum chemistry values of the European brown hare. Vet Clin Pathol. 2003;32:195–198. doi: 10.1111/j.1939-165X.2003.tb00335.x. PubMed DOI

Burski K, Ueland T, Maciejewski R. Serum amylase activity disorders in the course of experimental diabetes in rabbits. Vet Med-Czech. 2004;49:197–200.

Amersfoort Van ES, Berkel Van TJC, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379–414. doi: 10.1128/CMR.16.3.379-414.2003. PubMed DOI PMC

Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O, Stejskal K, Baloun J, Pikula J, Havel L, Zehnalek J, Adam V, Trnkova L, Beklova M, Kizek R. Electroanalysis of plant thiols. Sensors - Basel. 2007;7:932–959.

Salvi A, Bruhlmann C, Migliavacca E, Carrupt PA, Hostettmann K, Testa B. Protein protection by antioxidants: development of a convenient assay and structure-activity relationships of natural polyphenols. Helv Chim Acta. 2002;85:867–881. doi: 10.1002/1522-2675(200203)85:3<867::AID-HLCA867>3.0.CO;2-Z. DOI

Lindgren H, Stenmark S, Chen WX, Tarnvik A, Sjostedt A. Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun. 2004;72:7172–7182. doi: 10.1128/IAI.72.12.7172-7182.2004. PubMed DOI PMC

Lindgren H, Shen H, Zingmark C, Golovliov I, Conlan W, Sjostedt A. Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect Immun. 2007;75:1303–1309. doi: 10.1128/IAI.01717-06. PubMed DOI PMC

Katalinic V, Salamunic I, Pazanin S, Mulic R, Milisic M, Ropac D. The antioxidant power and level of lipid peroxidation products in the sera of apparently healthy adult males. Collegium Antropologicum. 2007;1:165–171. PubMed

Krocova Z, Macela A, Hernychova L, Kroca M, Pechova J, Kopecky J. Tick salivary gland extract accelerates proliferation of Francisella tularensis in the host. J Parasitol. 2003;89:14–20. doi: 10.1645/0022-3395(2003)089[0014:TSGEAP]2.0.CO;2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace