White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26821755
PubMed Central
PMC4731777
DOI
10.1038/srep19829
PII: srep19829
Knihovny.cz E-zdroje
- MeSH
- Ascomycota patogenita MeSH
- Chiroptera mikrobiologie MeSH
- haplotypy MeSH
- hibernace MeSH
- interakce hostitele a patogenu * MeSH
- kůže mikrobiologie patologie MeSH
- lidé MeSH
- mykózy epidemiologie mikrobiologie patologie MeSH
- nos mikrobiologie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Evropa MeSH
- Rusko MeSH
- Severní Amerika MeSH
A striking feature of white-nose syndrome, a fungal infection of hibernating bats, is the difference in infection outcome between North America and Europe. Here we show high WNS prevalence both in Europe and on the West Siberian Plain in Asia. Palearctic bat communities tolerate similar fungal loads of Pseudogymnoascus destructans infection as their Nearctic counterparts and histopathology indicates equal focal skin tissue invasiveness pathognomonic for WNS lesions. Fungal load positively correlates with disease intensity and it reaches highest values at intermediate latitudes. Prevalence and fungal load dynamics in Palearctic bats remained persistent and high between 2012 and 2014. Dominant haplotypes of five genes are widespread in North America, Europe and Asia, expanding the source region of white-nose syndrome to non-European hibernacula. Our data provides evidence for both endemicity and tolerance to this persistent virulent fungus in the Palearctic, suggesting that host-pathogen interaction equilibrium has been established.
Centre for Cartography of Fauna and Flora Antoličičeva 1 SI 2204 Miklavž na Dravskem polju Slovenia
Department of Botany and Zoology Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Institute of Biostatistics and Analysis Masaryk University Kamenice 3 625 00 Brno Czech Republic
Latvian State Forest Research Institute Silava 111 Rigas str LV 2169 Salaspils Latvia
Ural State Pedagogical University Kosmonavtov str 26 620017 Yekaterinburg Russia
Zobrazit více v PubMed
Daszak P., Cunningham A. A. & Hyatt A. D. Emerging infectious diseases of wildlife - Threats to biodiversity and human health. Science 287, 443–449 (2000). PubMed
Keesing F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010). PubMed PMC
Dobson A. & Foufopoulos J. Emerging infectious pathogens of wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1001–1012 (2001). PubMed PMC
Puechmaille S. J. et al. White-nose syndrome: is this emerging disease a threat to European bats? Trends Ecol. Evol. 26, 570–576 (2011). PubMed
Fisher M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012). PubMed PMC
Bergman A. & Casadevall A. Mammalian endothermy optimally restricts fungi and metabolic costs. mBio 1, e00212–00210 (2010). PubMed PMC
Garcia-Solache M. A. & Casadevall A. Global warming will bring new fungal diseases for mammals. mBio 1, e00061–00010 (2010). PubMed PMC
González-González A. E. et al. Histoplasma capsulatum and Pneumocystis spp. co-infection in wild bats from Argentina, French Guyana, and Mexico. BMC Microbiology 14, 23 (2014). PubMed PMC
Johara M. Y. et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis. 7, 439–441 (2001). PubMed PMC
Hayman D. T. S. et al. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS ONE 5, e11978 (2010). PubMed PMC
Middleton D. J. et al. Experimental Nipah virus infection in Pteropid bats (Pteropus poliocephalus). J. Comp. Pathol. 136, 266–272 (2007). PubMed
Olival K. J. & Hayman D. T. S. Filoviruses in bats: Current knowledge and future directions. Viruses 6, 1759–1788 (2014). PubMed PMC
Calisher C. H., Childs J. E., Field H. E., Holmes K. V. & Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 531–545 (2006). PubMed PMC
Moratelli R. & Calisher C. H. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz. 110, 1–22 (2015). PubMed PMC
O’Shea T. J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745 (2014). PubMed PMC
Mandl J. N. et al. Reservoir host immune responses to emerging zoonotic viruses. Cell 160, 20–35 (2015). PubMed PMC
Meteyer C. U., Barber D. & Mandl J. N. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence 3, 583–588 (2012). PubMed PMC
Bouma H. R., Carey H. V. & Kroese F. G. M. Hibernation: the immune system at rest? J. Leukoc. Biol. 88, 619–624 (2010). PubMed
Langwig K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. R. Soc. B Biol. Sci. 282, 20142335 (2015). PubMed PMC
Blehert D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen? Science 323, 227 (2009). PubMed
Gargas A., Trest M. T., Christensen M., Volk T. J. & Blehert D. S. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).
Minnis A. M. & Lindner D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649 (2013). PubMed
Warnecke L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Nat. Acad. Sci. USA 109, 6999–7003 (2012). PubMed PMC
Frick W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010). PubMed
Coleman J. T. H. & Reichard J. D. Bat white-nose syndrome in 2014: A brief assessment seven years after discovery of a virulent fungal pathogen in North America. Outlooks in Pest Management 25, 374–377 (2014).
Turner G. G., Reeder D. M. & Coleman J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats, with a look at the future. Update of white-nose syndrome in bats. Bat Research News 52, 13–27 (2011).
Lorch J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376–378 (2011). PubMed
Langwig K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012). PubMed
Lorch J. M. et al. Distribution and environmental persistence of the causative agent of white-nose syndrome, Geomyces destructans, in bat hibernacula of the Eastern United States. Appl. Environ. Microbiol. 79, 1293–1301 (2013). PubMed PMC
Hoyt J. R. et al. Long-term persistence of Pseudogymnoascus destructans, the causative agent of white-nose syndrome, in the absence of bats. EcoHealth, 10.1007/s10393-014-0981-4 (2014). PubMed DOI
Zukal J. et al. White-nose syndrome fungus: A generalist pathogen of hibernating bats. PLoS ONE 9, e97224 (2014). PubMed PMC
Lorch J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252 (2013). PubMed
Ren P. et al. Clonal spread of Geomyces destructans among bats, midwestern and southern United States. Emerg. Infect. Dis. 18, 883–885 (2012). PubMed PMC
Rajkumar S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 17, 1273–1276 (2011). PubMed PMC
Escobar L. E., Lira-Noriega A., Medina-Vogel G. & Townsend Peterson A. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014). PubMed
Maher S. P. et al. Spread of white-nose syndrome on a network regulated by geography and climate. Nat. Commun. 3, 1306 (2012). PubMed
Maslo B. & Fefferman N. H. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. Conserv. Biol. 29, 1176–1185 (2015). PubMed
Martínková N. et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5, e13853 (2010). PubMed PMC
Puechmaille S. J. et al. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS ONE 6, e19167 (2011). PubMed PMC
Wibbelt G. et al. White-nose syndrome fungus (Geomyces destructans) in bats, Europe. Emerg. Infect. Dis. 16, 1237–1243 (2010). PubMed PMC
Pavlinić I., Đaković M. & Lojkić I. Pseudogymnoascus destructans in Croatia confirmed. Eur. J. Wildl. Res. 61, 325–328 (2015).
Bandouchova H. et al. Pseudogymnoascus destructans: evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound. Emerg. Dis. 62, 1–5 (2015). PubMed
Palmer J. M. et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 (Bethesda) 4, 1755–1763 (2014). PubMed PMC
Leopardi S., Blake D. & Puechmaille S. J. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25, R217–219 (2015). PubMed
Blehert D. S. Fungal disease and the developing story of bat white-nose syndrome. PLoS Pathog. 8, e1002779 (2012). PubMed PMC
Lorch J. M. et al. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. J. Wildl. Dis. 51, 36–47 (2015). PubMed
Meteyer C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414 (2009). PubMed
Turner G. G. et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J. Wildl. Dis. 50, 566–573 (2014). PubMed
Hutterer R., Ivanova T., Meyer-Cords C. & Rodrigues L. Bat Migrations in Europe: A Review of Banding Data and Literature. (Federal Agency for Nature Conservation, 2005).
Perry R. W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 21, 28–39 (2013).
Hoyt J. R. et al. Widespread bat white-nose syndrome fungus, Northeastern China. Emerg. Infect. Dis. 22, 10.3201/eid2201.151314 (2016). PubMed DOI PMC
McCallum H. & Dobson A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995). PubMed
Shuey M. M., Drees K. P., Lindner D. L., Keim P. & Foster J. T. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl. Environ. Microbiol. 80, 1726–1731 (2014). PubMed PMC
Van der Meij T. et al. Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mammalian Biology - Zeitschrift für Säugetierkunde 80, 170–177 (2015).
Langwig K. E. et al. Invasion dynamics of white-nose syndrome fungus, Midwestern United States, 2012–2014. Emerg. Infect. Dis. 21, 10.3201/eid2106.150123 (2015). PubMed DOI PMC
Retallick R. W., McCallum H. & Speare R. Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol. 2, e351 (2004). PubMed PMC
Horrocks N. P., Matson K. D. & Tieleman B. I. Pathogen pressure puts immune defense into perspective. Integr. Comp. Biol. 51, 563–576 (2011). PubMed
Bernard R. F., Foster J. T., Willcox E. V., Parise K. L. & McCracken G. F. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J. Wildl. Dis. 51, 519–522 (2015). PubMed
Janicki A. F. et al. Efficacy of visual surveys for White-nose syndrome at bat hibernacula. PLoS ONE 10, e0133390, 10.1371/journal.pone.0133390 (2015). PubMed DOI PMC
Frick W. F. et al. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24, 741–749, 10.1111/geb.12290 (2015). DOI
Medzhitov R., Schneider D. S. & Soares M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012). PubMed PMC
Råberg L., Graham A. L. & Read A. F. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 37–49 (2009). PubMed PMC
Schindelin J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9, 676–682 (2012). PubMed PMC
Core Team. R. R: A language and environment for statistical computing, http://www.R-project.org/ (2013).
Kubátová A., Koukol O. & Nováková A. Geomyces destructans, phenotypic features of some Czech isolates. Czech Mycol. 63, 65–75 (2011).
Bandelt H. J., Forster P. & Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999). PubMed
Norberg U. M. & Rayner J. M. V. Ecological morphology and flight in bats (Mammalia, Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 316, 335–427 (1987).
Hallam T. G. & Federico P. The panzootic white-nose syndrome: an environmentally constrained disease? Transbound. Emerg. Dis. 59, 269–278 (2012). PubMed
Paradis E., Claude J. & Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). PubMed
Sanderson M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002). PubMed
Harmon L. J., Weir J. T., Brock C. D., Glor R. E. & Challenger W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008). PubMed
Revell L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Ives A. R., Midford P. E. & Garland T. Jr. Within-species measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270 (2007). PubMed
Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen
Ten decadal advances in fungal biology leading towards human well-being
Performance of bat-derived macrophages at different temperatures
Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats
Bat population recoveries give insight into clustering strategies during hibernation
Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters
Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states
White-nose syndrome detected in bats over an extensive area of Russia
Alterations in the health of hibernating bats under pathogen pressure
White-nose syndrome pathology grading in Nearctic and Palearctic bats
Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection