Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33020524
PubMed Central
PMC7536203
DOI
10.1038/s41598-020-73619-7
PII: 10.1038/s41598-020-73619-7
Knihovny.cz E-zdroje
- MeSH
- Ascomycota enzymologie metabolismus fyziologie MeSH
- Chiroptera mikrobiologie fyziologie MeSH
- fylogeneze MeSH
- jeskyně MeSH
- lipasa MeSH
- mykózy patofyziologie MeSH
- nos mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- lipasa MeSH
The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.
Department of Botany Faculty of Science Charles University Benátská 2 12801 Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60365 Brno Czech Republic
Zobrazit více v PubMed
Minnis AM, Lindner DL. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 2013;117:638–649. doi: 10.1016/j.funbio.2013.07.001. PubMed DOI
Blehert DS, et al. Bat white-nose syndrome: An emerging fungal pathogen? Science. 2009;323:227. doi: 10.1126/science.1163874. PubMed DOI
Chaturvedi V, Chaturvedi S. Editorial: What is in a Name? A proposal to use geomycosis instead of white nose syndrome (WNS) to describe bat infection caused by geomyces destructans. Mycopathologia. 2011;171:231–233. doi: 10.1007/s11046-010-9385-3. PubMed DOI
Frick WF, Puechmaille SJ, Willis CK. Bats in the Anthropocene: Conservation of Bats in a Changing World. Berlin: Springer; 2016. pp. 245–262.
Bandouchova H, et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 2018;8:6067. doi: 10.1038/s41598-018-24461-5. PubMed DOI PMC
Zukal J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 2016;6:19829. doi: 10.1038/srep19829. PubMed DOI PMC
Drees KP, et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. mBio. 2017;8:11941–11917. doi: 10.1128/mBio.01941-17. PubMed DOI PMC
Leopardi S, Blake D, Puechmaille SJ. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 2015;25:217–219. doi: 10.1016/j.cub.2015.01.047. PubMed DOI
Palmer JM, et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes Genomes Genet. 2014;4:1755–1763. PubMed PMC
Trivedi JN. Population genomics and mutational history of the invasive, epidemic clone of Pseudogymnoascus destructans, causal agent of White-nose Syndrome in bats. Toronto: University of Toronto; 2017.
Rajkumar SS, et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 2011;17:1273–1276. doi: 10.3201/eid1707.102056. PubMed DOI PMC
Lorch JM, et al. First detection of bat white-nose syndrome in western North America. mSphere. 2016;1:e00148–e1116. doi: 10.1128/mSphere.00148-16. PubMed DOI PMC
Forsythe A, Giglio V, Asa J, Xu J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose syndrome pathogen, Pseudogymnoascus destructans, North America. Appl. Environ. Microbiol. 2018;84:e00863–e1818. doi: 10.1128/aem.00863-18. PubMed DOI PMC
Khankhet J, et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE. 2014;9:e104684. doi: 10.1371/journal.pone.0104684. PubMed DOI PMC
Cryan PM, Meteyer CU, Boyles JG, Blehert DS. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 2010;8:1–8. doi: 10.1186/1741-7007-8-135. PubMed DOI PMC
Meteyer CU, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 2009;21:411–414. doi: 10.1177/104063870902100401. PubMed DOI
Pikula J, et al. White-nose syndrome pathology grading in nearctic and palearctic bats. PLoS ONE. 2017;12:e0180435. doi: 10.1371/journal.pone.0180435. PubMed DOI PMC
Warnecke L, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 2012;109:6999–7003. doi: 10.1073/pnas.1200374109. PubMed DOI PMC
Flieger M, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 2016;6:33200. doi: 10.1038/srep33200. PubMed DOI PMC
Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2016;2:e1500831. doi: 10.1126/sciadv.1500831. PubMed DOI PMC
Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Vol. 9 (2013). PubMed PMC
Wibbelt G. in Emerging and Epizootic Fungal Infections in Animals. Berlin: Springer; 2018. pp. 289–307.
Achterman RR, White TC. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 2011;20:12. PubMed PMC
Chinnapun D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. (WJST) 2015;12:573–580.
Pannkuk EL, Risch TS, Savary BJ. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE. 2015;10:e0120508. doi: 10.1371/journal.pone.0120508. PubMed DOI PMC
Raudabaugh DB, Miller AN. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE. 2013;8:e78300. doi: 10.1371/journal.pone.0078300. PubMed DOI PMC
Mascuch SJ, et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE. 2015;10:e0119668. doi: 10.1371/journal.pone.0119668. PubMed DOI PMC
van Burik JAH, Magee PT. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 2001;55:743–772. doi: 10.1146/annurev.micro.55.1.743. PubMed DOI
Donaldson ME, et al. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: Implications in identifying virulence factors. Mycologia. 2018;110:300–315. doi: 10.1080/00275514.2018.1438223. PubMed DOI
Field KA, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC
Reeder SM, et al. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence. 2017;8:1695–1707. doi: 10.1080/21505594.2017.1342910. PubMed DOI PMC
Lorch JM, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. 2011;480:376. doi: 10.1038/nature10590. PubMed DOI
Lorch JM, et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia. 2012;105:237–252. doi: 10.3852/12-207. PubMed DOI
Meyer AD, Stevens DF, Blackwood JC. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J. Theor. Biol. 2016;409:60–69. doi: 10.1016/j.jtbi.2016.08.033. PubMed DOI
Gargas A, Trest M, Christensen M, Volk TJ, Blehert D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon. 2009;108:147–154. doi: 10.5248/108.147. DOI
Chaturvedi V, et al. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS) PLoS ONE. 2010;5:e10783. doi: 10.1371/journal.pone.0010783. PubMed DOI PMC
Verant ML, Boyles JG, Waldrep W, Jr, Wibbelt G, Blehert DS. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE. 2012;7:e46280. doi: 10.1371/journal.pone.0046280. PubMed DOI PMC
Palmer JM, Drees KP, Foster JT, Lindner DL. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 2018;9:35. doi: 10.1038/s41467-017-02441-z. PubMed DOI PMC
Campbell LJ, Walsh DP, Blehert DS, Lorch JM. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildlife Dis. 2020;56:278–287. doi: 10.7589/2019-04-106. PubMed DOI
Reynolds HT, Barton HA. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE. 2014;9:e86437. doi: 10.1371/journal.pone.0086437. PubMed DOI PMC
Smyth C, Schlesinger S, Overton B, Butchkoski C. The alternative host hypothesis and potential virulence genes in Geomyces destructans. Bat Res. News. 2013;54:17–24.
Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research. 2018;7:2. doi: 10.12688/f1000research.15067.2. PubMed DOI PMC
Vanderwolf KJ, Malloch D, McAlpine DF, Forbes GJ. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013;42:9. doi: 10.5038/1827-806X.42.1.9. DOI
Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE. 2017;12:e0178968. doi: 10.1371/journal.pone.0178968. PubMed DOI PMC
Gabriel KT, Neville JJ, Pierce GE, Cornelison CT. Lipolytic activity and the utilization of fatty acids associated with bat sebum by Pseudogymnoascus destructans. Mycopathologia. 2019;184:625–636. doi: 10.1007/s11046-019-00381-4. PubMed DOI
Park M, Do E, Jung WH. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology. 2013;41:67–72. doi: 10.5941/myco.2013.41.2.67. PubMed DOI PMC
Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon. 2016;110:90–109. doi: 10.1016/j.toxicon.2015.11.020. PubMed DOI
Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 2000;68:443–448. doi: 10.1128/IAI.68.2.443-448.2000. PubMed DOI PMC
Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 2014;10:e1003995. doi: 10.1371/journal.ppat.1003995. PubMed DOI PMC
Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 2017;13:e1006149. doi: 10.1371/journal.ppat.1006149. PubMed DOI PMC
Shawcross DL, et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology. 2008;48:1202–1212. doi: 10.1002/hep.22474. PubMed DOI
O’Donoghue AJ, et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PNAS. 2015;112:7478–7483. doi: 10.1073/pnas.1507082112. PubMed DOI PMC
Marroquin CM, Lavine JO, Windstam ST. Effect of humidity on development of Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 2017;24:54–64. doi: 10.1656/045.024.0105. DOI
Kolařík M, et al. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia. 2017;109:185–199. doi: 10.1080/00275514.2017.1303861. PubMed DOI
Garland JL. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 1996;28:213–221. doi: 10.1016/0038-0717(95)00112-3. DOI
Dobranic JK, Zak JC. A microtiter plate procedure for evaluating fungal functional diversity. Mycologia. 1999;91:756–765. doi: 10.1080/00275514.1999.12061081. PubMed DOI
Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods. 1997;30:91–101. doi: 10.1016/s0167-7012(97)00048-1. DOI
Sobek EA, Zak JC. The Soil FungiLog procedure: Method and analytical approaches toward understanding fungal functional diversity. Mycologia. 2003;95:590–602. doi: 10.1080/15572536.2004.11833063. PubMed DOI
Kouker G, Jaeger K-E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 1987;53:211–213. doi: 10.1128/AEM.53.1.211-213.1987. PubMed DOI PMC
Lupan DM, Nziramasanga P. Collagenolytic activity of Coccidioides immitis. Infect. Immun. 1986;51:360–361. doi: 10.1128/IAI.51.1.360-361.1986. PubMed DOI PMC
Saleh-Rastin N, Petersen M, Coleman S, Hubbell D. The rhizosphere and plant growth. Berlin: Springer; 1991. pp. 188–188.
NziramasangaM P, Lupan D. Elastase activity of Coccidioides immitis. J. Med. Microbiol. 1985;19:109–114. doi: 10.1099/00222615-19-1-109. PubMed DOI
Dietz M, Kalko EK. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii) J. Comp. Physiol. B. 2006;176:223–231. doi: 10.1007/s00360-005-0043-x. PubMed DOI
Sephton-Clark PCS, Voelz K. In: Advances in applied microbiology. Sima S, Geoffrey MG, editors. New York: Academic Press; 2018. pp. 117–157. PubMed
Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9.
Martínková N, et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE. 2010;5:e13853. doi: 10.1371/journal.pone.0013853. PubMed DOI PMC
Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 2016;16:388–401. doi: 10.1111/1755-0998.12456. PubMed DOI
Crous P, et al. Fungal planet description sheets: 558–624. Persoonia. 2017;38:240. doi: 10.3767/003158517X698941. PubMed DOI PMC
Hubka V, et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst. Evol. 2016;302:1267–1299. doi: 10.1007/s00606-016-1331-5. DOI
Kubátová A, Hujslová M, Frisvad JC, Chudíčková M, Kolařík M. Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol. Progr. 2019;18:215–228. doi: 10.1007/s11557-018-1420-7. DOI
Gabrielová A, et al. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia. 2018;183:751–764. doi: 10.1007/s11046-018-0277-2. PubMed DOI PMC