Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

. 2020 Oct 05 ; 10 (1) : 16530. [epub] 20201005

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33020524
Odkazy

PubMed 33020524
PubMed Central PMC7536203
DOI 10.1038/s41598-020-73619-7
PII: 10.1038/s41598-020-73619-7
Knihovny.cz E-zdroje

The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.

Zobrazit více v PubMed

Minnis AM, Lindner DL. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 2013;117:638–649. doi: 10.1016/j.funbio.2013.07.001. PubMed DOI

Blehert DS, et al. Bat white-nose syndrome: An emerging fungal pathogen? Science. 2009;323:227. doi: 10.1126/science.1163874. PubMed DOI

Chaturvedi V, Chaturvedi S. Editorial: What is in a Name? A proposal to use geomycosis instead of white nose syndrome (WNS) to describe bat infection caused by geomyces destructans. Mycopathologia. 2011;171:231–233. doi: 10.1007/s11046-010-9385-3. PubMed DOI

Frick WF, Puechmaille SJ, Willis CK. Bats in the Anthropocene: Conservation of Bats in a Changing World. Berlin: Springer; 2016. pp. 245–262.

Bandouchova H, et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 2018;8:6067. doi: 10.1038/s41598-018-24461-5. PubMed DOI PMC

Zukal J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 2016;6:19829. doi: 10.1038/srep19829. PubMed DOI PMC

Drees KP, et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. mBio. 2017;8:11941–11917. doi: 10.1128/mBio.01941-17. PubMed DOI PMC

Leopardi S, Blake D, Puechmaille SJ. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 2015;25:217–219. doi: 10.1016/j.cub.2015.01.047. PubMed DOI

Palmer JM, et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes Genomes Genet. 2014;4:1755–1763. PubMed PMC

Trivedi JN. Population genomics and mutational history of the invasive, epidemic clone of Pseudogymnoascus destructans, causal agent of White-nose Syndrome in bats. Toronto: University of Toronto; 2017.

Rajkumar SS, et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 2011;17:1273–1276. doi: 10.3201/eid1707.102056. PubMed DOI PMC

Lorch JM, et al. First detection of bat white-nose syndrome in western North America. mSphere. 2016;1:e00148–e1116. doi: 10.1128/mSphere.00148-16. PubMed DOI PMC

Forsythe A, Giglio V, Asa J, Xu J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose syndrome pathogen, Pseudogymnoascus destructans, North America. Appl. Environ. Microbiol. 2018;84:e00863–e1818. doi: 10.1128/aem.00863-18. PubMed DOI PMC

Khankhet J, et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE. 2014;9:e104684. doi: 10.1371/journal.pone.0104684. PubMed DOI PMC

Cryan PM, Meteyer CU, Boyles JG, Blehert DS. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 2010;8:1–8. doi: 10.1186/1741-7007-8-135. PubMed DOI PMC

Meteyer CU, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 2009;21:411–414. doi: 10.1177/104063870902100401. PubMed DOI

Pikula J, et al. White-nose syndrome pathology grading in nearctic and palearctic bats. PLoS ONE. 2017;12:e0180435. doi: 10.1371/journal.pone.0180435. PubMed DOI PMC

Warnecke L, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 2012;109:6999–7003. doi: 10.1073/pnas.1200374109. PubMed DOI PMC

Flieger M, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 2016;6:33200. doi: 10.1038/srep33200. PubMed DOI PMC

Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2016;2:e1500831. doi: 10.1126/sciadv.1500831. PubMed DOI PMC

Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Vol. 9 (2013). PubMed PMC

Wibbelt G. in Emerging and Epizootic Fungal Infections in Animals. Berlin: Springer; 2018. pp. 289–307.

Achterman RR, White TC. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 2011;20:12. PubMed PMC

Chinnapun D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. (WJST) 2015;12:573–580.

Pannkuk EL, Risch TS, Savary BJ. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE. 2015;10:e0120508. doi: 10.1371/journal.pone.0120508. PubMed DOI PMC

Raudabaugh DB, Miller AN. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE. 2013;8:e78300. doi: 10.1371/journal.pone.0078300. PubMed DOI PMC

Mascuch SJ, et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE. 2015;10:e0119668. doi: 10.1371/journal.pone.0119668. PubMed DOI PMC

van Burik JAH, Magee PT. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 2001;55:743–772. doi: 10.1146/annurev.micro.55.1.743. PubMed DOI

Donaldson ME, et al. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: Implications in identifying virulence factors. Mycologia. 2018;110:300–315. doi: 10.1080/00275514.2018.1438223. PubMed DOI

Field KA, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC

Reeder SM, et al. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence. 2017;8:1695–1707. doi: 10.1080/21505594.2017.1342910. PubMed DOI PMC

Lorch JM, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. 2011;480:376. doi: 10.1038/nature10590. PubMed DOI

Lorch JM, et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia. 2012;105:237–252. doi: 10.3852/12-207. PubMed DOI

Meyer AD, Stevens DF, Blackwood JC. Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J. Theor. Biol. 2016;409:60–69. doi: 10.1016/j.jtbi.2016.08.033. PubMed DOI

Gargas A, Trest M, Christensen M, Volk TJ, Blehert D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon. 2009;108:147–154. doi: 10.5248/108.147. DOI

Chaturvedi V, et al. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS) PLoS ONE. 2010;5:e10783. doi: 10.1371/journal.pone.0010783. PubMed DOI PMC

Verant ML, Boyles JG, Waldrep W, Jr, Wibbelt G, Blehert DS. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE. 2012;7:e46280. doi: 10.1371/journal.pone.0046280. PubMed DOI PMC

Palmer JM, Drees KP, Foster JT, Lindner DL. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat. Commun. 2018;9:35. doi: 10.1038/s41467-017-02441-z. PubMed DOI PMC

Campbell LJ, Walsh DP, Blehert DS, Lorch JM. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildlife Dis. 2020;56:278–287. doi: 10.7589/2019-04-106. PubMed DOI

Reynolds HT, Barton HA. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE. 2014;9:e86437. doi: 10.1371/journal.pone.0086437. PubMed DOI PMC

Smyth C, Schlesinger S, Overton B, Butchkoski C. The alternative host hypothesis and potential virulence genes in Geomyces destructans. Bat Res. News. 2013;54:17–24.

Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research. 2018;7:2. doi: 10.12688/f1000research.15067.2. PubMed DOI PMC

Vanderwolf KJ, Malloch D, McAlpine DF, Forbes GJ. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013;42:9. doi: 10.5038/1827-806X.42.1.9. DOI

Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE. 2017;12:e0178968. doi: 10.1371/journal.pone.0178968. PubMed DOI PMC

Gabriel KT, Neville JJ, Pierce GE, Cornelison CT. Lipolytic activity and the utilization of fatty acids associated with bat sebum by Pseudogymnoascus destructans. Mycopathologia. 2019;184:625–636. doi: 10.1007/s11046-019-00381-4. PubMed DOI

Park M, Do E, Jung WH. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology. 2013;41:67–72. doi: 10.5941/myco.2013.41.2.67. PubMed DOI PMC

Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon. 2016;110:90–109. doi: 10.1016/j.toxicon.2015.11.020. PubMed DOI

Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 2000;68:443–448. doi: 10.1128/IAI.68.2.443-448.2000. PubMed DOI PMC

Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 2014;10:e1003995. doi: 10.1371/journal.ppat.1003995. PubMed DOI PMC

Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 2017;13:e1006149. doi: 10.1371/journal.ppat.1006149. PubMed DOI PMC

Shawcross DL, et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology. 2008;48:1202–1212. doi: 10.1002/hep.22474. PubMed DOI

O’Donoghue AJ, et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PNAS. 2015;112:7478–7483. doi: 10.1073/pnas.1507082112. PubMed DOI PMC

Marroquin CM, Lavine JO, Windstam ST. Effect of humidity on development of Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 2017;24:54–64. doi: 10.1656/045.024.0105. DOI

Kolařík M, et al. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia. 2017;109:185–199. doi: 10.1080/00275514.2017.1303861. PubMed DOI

Garland JL. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 1996;28:213–221. doi: 10.1016/0038-0717(95)00112-3. DOI

Dobranic JK, Zak JC. A microtiter plate procedure for evaluating fungal functional diversity. Mycologia. 1999;91:756–765. doi: 10.1080/00275514.1999.12061081. PubMed DOI

Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods. 1997;30:91–101. doi: 10.1016/s0167-7012(97)00048-1. DOI

Sobek EA, Zak JC. The Soil FungiLog procedure: Method and analytical approaches toward understanding fungal functional diversity. Mycologia. 2003;95:590–602. doi: 10.1080/15572536.2004.11833063. PubMed DOI

Kouker G, Jaeger K-E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 1987;53:211–213. doi: 10.1128/AEM.53.1.211-213.1987. PubMed DOI PMC

Lupan DM, Nziramasanga P. Collagenolytic activity of Coccidioides immitis. Infect. Immun. 1986;51:360–361. doi: 10.1128/IAI.51.1.360-361.1986. PubMed DOI PMC

Saleh-Rastin N, Petersen M, Coleman S, Hubbell D. The rhizosphere and plant growth. Berlin: Springer; 1991. pp. 188–188.

NziramasangaM P, Lupan D. Elastase activity of Coccidioides immitis. J. Med. Microbiol. 1985;19:109–114. doi: 10.1099/00222615-19-1-109. PubMed DOI

Dietz M, Kalko EK. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii) J. Comp. Physiol. B. 2006;176:223–231. doi: 10.1007/s00360-005-0043-x. PubMed DOI

Sephton-Clark PCS, Voelz K. In: Advances in applied microbiology. Sima S, Geoffrey MG, editors. New York: Academic Press; 2018. pp. 117–157. PubMed

Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9.

Martínková N, et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE. 2010;5:e13853. doi: 10.1371/journal.pone.0013853. PubMed DOI PMC

Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 2016;16:388–401. doi: 10.1111/1755-0998.12456. PubMed DOI

Crous P, et al. Fungal planet description sheets: 558–624. Persoonia. 2017;38:240. doi: 10.3767/003158517X698941. PubMed DOI PMC

Hubka V, et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst. Evol. 2016;302:1267–1299. doi: 10.1007/s00606-016-1331-5. DOI

Kubátová A, Hujslová M, Frisvad JC, Chudíčková M, Kolařík M. Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol. Progr. 2019;18:215–228. doi: 10.1007/s11557-018-1420-7. DOI

Gabrielová A, et al. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia. 2018;183:751–764. doi: 10.1007/s11046-018-0277-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace