Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection

. 2016 Sep 13 ; 6 () : 33200. [epub] 20160913

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27620349

Pathogenic and non-pathogenic related microorganisms differ in secondary metabolite production. Here we show that riboflavin overproduction by a fungal pathogen and its hyperaccumulation in affected host tissue exacerbates a skin infection to necrosis. In white-nose syndrome (WNS) skin lesions caused by Pseudogymnoascus destructans, maximum riboflavin concentrations reached up to 815 μg ml(-1), indicating bioaccumulation and lack of excretion. We found that high riboflavin concentrations are cytotoxic under conditions specific for hibernation, affect bats' primary fibroblasts and induce cell detachment, loss of mitochondrial membrane potential, polymerization of cortical actin, and cell necrosis. Our results explain molecular pathology of WNS, where a skin infection becomes fatal. Hyperaccumulation of vitamin B2 coupled with reduced metabolism and low tissue oxygen saturation during hibernation prevents removal of excess riboflavin in infected bats. Upon reperfusion, oxygen reacts with riboflavin resulting in dramatic pathology after arousal. While multiple molecules enable invasive infection, riboflavin-associated extensive necrosis likely contributes to pathophysiology and altered arousal pattern in infected bats. Bioaccumulation of a vitamin under natural infection represents a novel condition in a complex host-pathogen interplay.

Zobrazit více v PubMed

Scharf D. H., Heinekamp T. & Brakhage A. A. Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog. 10, e1003859 (2014). PubMed PMC

Bonomi H. R. et al.. An atypical riboflavin pathway is essential for Brucella abortus virulence. PLoS ONE 5, e9435 (2010). PubMed PMC

Garfoot A. L., Zemska O. & Rappleye C. A. Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. Infect. Immun. 82, 393–404 (2014). PubMed PMC

Zylberman V. et al.. Evolution of vitamin B2 biosynthesis: 6, 7-dimethyl-8-ribityllumazine synthases of Brucella. J. Bacteriol. 188, 6135–6142 (2006). PubMed PMC

Massey V. The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283–296 (2000). PubMed

Wondrak G. T., Jacobson M. K. & Jacobson E. L. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 5, 215–237 (2006). PubMed

Mascuch S. J. et al.. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE 10, e0119668 (2015). PubMed PMC

O’Donoghue A. J. et al.. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc. Natl. Acad. Sci. 112, 7478–7483 (2015). PubMed PMC

Pannkuk E. L., Risch T. S. & Savary B. J. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans. PLoS ONE 10, e0120508 (2015). PubMed PMC

Bandouchova H. et al.. Pseudogymnoascus destructans: evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound. Emerg. Dis. 62, 1–5 (2015). PubMed

Blehert D. S. et al.. Bat White-Nose Syndrome: An Emerging Fungal Pathogen? Science 323, 227 (2009). PubMed

Lorch J. M. et al.. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376–378 (2011). PubMed

Meteyer C. U. et al.. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414 (2009). PubMed

Pikula J. et al.. Histopathology Confirms White-Nose Syndrome in Bats in Europe. J. Wildl. Dis. 48, 207–211 (2012). PubMed

Turner G. G. et al.. Nonlethal screening of bat-wing skin with ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J. Wildl. Dis. 50, 566–573 (2014). PubMed

Zukal J. et al.. White-Nose Syndrome Fungus: A Generalist Pathogen of Hibernating Bats. PLoS ONE 9, e97224 (2014). PubMed PMC

Frick W. F. et al.. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24, 741–749 (2015).

Cryan P., Meteyer C., Boyles J. & Blehert D. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 135 (2010). PubMed PMC

Meteyer C. U., Barber D. & Mandl J. N. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence 3, 583–588 (2012). PubMed PMC

Reeder D. M. et al.. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE 7, e38920 (2012). PubMed PMC

Verant M. L. et al.. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014). PubMed PMC

Warnecke L. et al.. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013). PubMed PMC

Xu Y. et al.. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 14, 567 (2013). PubMed PMC

Zukal J. et al.. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 6, 19829 (2016). PubMed PMC

Bhatta H., Goldys E. & Learmonth R. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl. Microbiol. Biotechnol. 71, 121–126 (2006). PubMed

Insińska-Rak M., Golczak A. & Sikorski M. Photochemistry of riboflavin derivatives in methanolic solutions. J. Phys. Chem. A 116, 1199–1207 (2012). PubMed

Crous P. W. et al.. Fungal Planet description sheets: 371–399. Persoonia 35, 264–327 (2015). PubMed PMC

Hubka V. et al.. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107, 169–208 (2015). PubMed

García-Fraile P. et al.. Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. Int. J. Syst. Evol. Microbiol. 65, 90–94 (2015). PubMed

Nováková A., Savická D. & Kolařík M. Two novel species of the genus Trichosporon isolated from a cave environment. Czech Mycol. 67, 233–239 (2015).

Lorch J. M. et al.. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. J. Wildl. Dis. 51, 36–47 (2015). PubMed

Chaturvedi V. et al.. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York Bats with white nose syndrome (WNS). PLoS ONE 5, e10783 (2010). PubMed PMC

Reynolds H. T. & Barton H. A. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS ONE 9, e86437 (2014). PubMed PMC

Schaible U. E. & Kaufmann S. H. Iron and microbial infection. Nat. Rev. Microbiol. 2, 946–953 (2004). PubMed

Crossley R. A. et al.. Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl. Environ. Microbiol. 73, 7819–7825 (2007). PubMed PMC

He X. et al.. Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS ONE 9, e109795 (2014). PubMed PMC

Moquin D. & Chan F. K.-M. The molecular regulation of programmed necrotic cell injury. Trends Biochem. Sci. 35, 434–441 (2010). PubMed PMC

Susin S. A. et al.. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999). PubMed

Field K. A. et al.. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11, e1005168 (2015). PubMed PMC

Bouma H. R., Carey H. V. & Kroese F. G. M. Hibernation: the immune system at rest? J. Leukocyte Biol. 88, 619–624 (2010). PubMed

Kjer-Nielsen L. et al.. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012). PubMed

Gold M. C. & Lewinsohn D. M. Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat. Rev. Microbiol. 11, 14–19 (2013). PubMed

Turner G. G., Reeder D. M. & Coleman J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Research News 52, 13–27 (2011).

Reichard J. D. & Kunz T. H. White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (Myotis lucifugus). Acta Chiropter. 11, 457–464 (2009).

Frick W. F. et al.. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010). PubMed

Nødvig C. S. et al.. A CRISPR-Cas9 System for genetic engineering of filamentous fungi. PLoS ONE 10, e0133085 (2015). PubMed PMC

Zhang T. et al.. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum. Fungal Genet. Biol. 81, 73–81 (2015). PubMed

Palmer J. M. et al.. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3-Genes Genom. Genet. 4, 1755–1763 (2014). PubMed PMC

Minnis A. M. & Lindner D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649 (2013). PubMed

Shuey M. M., Drees K. P., Lindner D. L., Keim P. & Foster J. T. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl. Environ. Microb. 80, 1726–1731 (2014). PubMed PMC

Schindelin J. et al.. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

USGS. Diagnostic categories for reporting cases of bat white-nose syndrome (WNS) summary of revisions to WNS case definitions for the 2014/2015 season. https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/Case%20Defintions%20for%20WNS.pdf, accessed on 4 August, 2016.

Gargas A., Trest M. T., Christensen M., Volk T. J. & Blehert D. S. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).

Martínková N. et al.. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5, e13853 (2010). PubMed PMC

Katoh K. & Standley D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC

Guindon S. & Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003). PubMed

Keane T. M., Creevey C. J., Pentony M. M., Naughton T. J. & McInerney J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen

. 2024 Sep 03 ; 25 (1) : 828. [epub] 20240903

Higher antibody titres against Pseudogymnoascus destructans are associated with less white-nose syndrome skin lesions in Palearctic bats

. 2023 ; 14 () : 1269526. [epub] 20231208

Higher white-nose syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal culture media

. 2023 Feb 10 ; 19 (1) : 40. [epub] 20230210

Performance of bat-derived macrophages at different temperatures

. 2022 ; 9 () : 978756. [epub] 20220909

Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula)

. 2022 May 14 ; 10 (5) : . [epub] 20220514

Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats

. 2020 Dec 10 ; 16 (1) : 482. [epub] 20201210

Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome

. 2020 Dec ; 11 (1) : 781-794.

Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

. 2020 Oct 05 ; 10 (1) : 16530. [epub] 20201005

Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states

. 2020 Jul 06 ; 16 (1) : 232. [epub] 20200706

Ergochromes: Heretofore Neglected Side of Ergot Toxicity

. 2019 Jul 25 ; 11 (8) : . [epub] 20190725

Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats

. 2018 Dec 31 ; 9 (1) : 1734-1750.

White-nose syndrome detected in bats over an extensive area of Russia

. 2018 Jun 18 ; 14 (1) : 192. [epub] 20180618

Alterations in the health of hibernating bats under pathogen pressure

. 2018 Apr 17 ; 8 (1) : 6067. [epub] 20180417

White-nose syndrome pathology grading in Nearctic and Palearctic bats

. 2017 ; 12 (8) : e0180435. [epub] 20170802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...