Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula)

. 2022 May 14 ; 10 (5) : . [epub] 20220514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35630470

Grantová podpora
21-12719S Czech Science Foundation

Odkazy

PubMed 35630470
PubMed Central PMC9143927
DOI 10.3390/microorganisms10051028
PII: microorganisms10051028
Knihovny.cz E-zdroje

Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid-base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid-base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.

Zobrazit více v PubMed

Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC

Kosoy M., Bai Y., Lynch T., Kuzmin I.V., Niezgoda M., Franka R., Agwanda B., Breiman R.F., Rupprecht C.E. Bartonella spp. in Bats, Kenya. Emerg. Infect. Dis. 2010;16:1875–1881. doi: 10.3201/eid1612.100601. PubMed DOI PMC

Evans N.J., Brown K., Timofte D., Simpson V.R., Birtles R.J. Fatal Borreliosis in Bat Caused by Relapsing Fever Spirochete, United Kingdom. Emerg. Infect. Dis. 2009;15:1331–1333. doi: 10.3201/eid1508.090475. PubMed DOI PMC

García-Fraile P., Chudíčková M., Benada O., Pikula J., Kolařík M. Serratia myotis sp. nov. and Serratia vespertilionis sp. nov. isolated from bats hibernating in caves in the Czech Republic. Int. J. Syst. Evol. Microbiol. 2015;65:90–94. doi: 10.1099/ijs.0.066407-0. PubMed DOI

Blehert D.S., Maluping R.P., Green D.E., Berlowski-Zier B.M., Ballman A.E., Langenberg J.A. Acute pasteurellosis in wild big brown bats (Eptesicus fuscus) J. Wildl. Dis. 2014;50:136–139. doi: 10.7589/2012-02-063. PubMed DOI

Mühldorfer K. Bats and Bacterial Pathogens: A Review. Zoonoses Public Health. 2013;60:93–103. doi: 10.1111/j.1863-2378.2012.01536.x. PubMed DOI

Sebghati T.S., Engle J.T., Goldman W.E. Intracellular parasitism by Histoplasma capsulatum: Fungal virulence and calcium dependence. Science. 2000;290:1368–1372. doi: 10.1126/science.290.5495.1368. PubMed DOI

Gardner R.A., Molyneux D.H. Schizotrypanum in British bats. Parasitology. 1988;97:43–50. doi: 10.1017/S0031182000066725. PubMed DOI

Steindel M., Grisard E.C., de Carvalho Pinto C.J., Cordeiro F.D., Ribeiro-Rodriques R., Romanha A.J. Characterization of trypanosomes from the subgenus Schizotrypanum isolated from bats, Eptesicus sp. (Chiroptera: Vespertilionidae), captured in Florianópolis, Santa Catarina State, Brazil. J. Parasitol. 1998;84:601–607. doi: 10.2307/3284730. PubMed DOI

Lisboa C.V., Pinho A.P., Herrera H.M., Gerhardt M., Cupolillo E., Jansen A.M. Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil. Vet. Parasitol. 2008;156:314–318. doi: 10.1016/j.vetpar.2008.06.004. PubMed DOI

Hamilton P.B., Teixeira M.M.G., Stevens J.R. The evolution of Trypanosoma cruzi: The ‘bat seeding’ hypothesis. Trends Parasitol. 2012;28:136–141. doi: 10.1016/j.pt.2012.01.006. PubMed DOI

Hamilton P.B., Cruickshank C., Stevens J.R., Teixeira M.M.G., Mathews F. Parasites reveal movement of bats between the New and Old Worlds. Mol. Phylogenet. Evol. 2012;63:521–526. doi: 10.1016/j.ympev.2012.01.007. PubMed DOI PMC

Lima L., Espinosa-Álvarez O., Hamilton P.B., Neves L., Takata C.S.A., Campaner M., Attias M., de Souza W., Camargo E.P., Teixeira M.M.G. Trypanosoma livingstonei: A new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasites Vectors. 2013;6:221. doi: 10.1186/1756-3305-6-221. PubMed DOI PMC

Cottontail V.M., Kalko E.K., Cottontail I., Wellinghausen N., Tschapka M., Perkins S.L., Pinto C.M. High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS ONE. 2014;9:e108603. doi: 10.1371/journal.pone.0108603. PubMed DOI PMC

Hodo C.L., Goodwin C.C., Mayes B.C., Mariscal J.A., Waldrup K.A., Hamer S.A. Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA. Acta Trop. 2016;164:259–266. doi: 10.1016/j.actatropica.2016.09.013. PubMed DOI PMC

Wang L.J., Han H.J., Zhao M., Liu J.W., Luo L.M., Wen H.L., Qin X.R., Zhou C.M., Qi H., Yu H., et al. Trypanosoma dionisii in insectivorous bats from northern China. Acta Trop. 2019;193:124–128. doi: 10.1016/j.actatropica.2019.02.028. PubMed DOI

Concannon R., Wynn-Owen K., Simpson V.R., Birtles R.J. Molecular characterization of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. Parasitology. 2005;131:489–496. doi: 10.1017/S0031182005008097. PubMed DOI

Gardner R.A., Molyneux D.H. Polychromophilus murinus: A malarial parasite of bats: Life-history and ultrastructural studies. Parasitology. 1988;96:591–605. doi: 10.1017/S0031182000080215. PubMed DOI

Corduneanu A., Hrazdilová K., Sándor A.D., Matei I.A., Ionică A.M., Barti L., Ciocănău M.A., Măntoiu D.S., Coroiu I., Hornok S., et al. Babesia vesperuginis, a neglected piroplasmid: New host and geographical records, and phylogenetic relations. Parasites Vectors. 2017;10:598. doi: 10.1186/s13071-017-2536-3. PubMed DOI PMC

Ranaivoson H.C., Héraud J.M., Goethert H.K., Telford S.R., III, Rabetafika L., Brook C.E. Babesial infection in the Madagascan flying fox, Pteropus rufus É. Geoffroy, 1803. Parasites Vectors. 2019;12:51. doi: 10.1186/s13071-019-3300-7. PubMed DOI PMC

Schaer J., Perkins S.L., Decher J., Leendertz F.H., Fahr J., Weber N., Matuschewski K. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. USA. 2013;110:17415–17419. doi: 10.1073/pnas.1311016110. PubMed DOI PMC

Minozzo G.A., da Silva Mathias B., Riediger I.N., de Oliveira Guimarães L., dos Anjos C.C., Monteiro E.F., dos Santos A.P., Biondo A.W., Kirchgatter K. First Molecular Detection of Polychromophilus Parasites in Brazilian Bat Species. Microorganisms. 2021;9:1240. doi: 10.3390/microorganisms9061240. PubMed DOI PMC

Munshi-South J., Wilkinson G.S. Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Res. Rev. 2010;9:12–19. doi: 10.1016/j.arr.2009.07.006. PubMed DOI

Zhang G., Cowled C., Shi Z., Huang Z., Bishop-Lilly K.A., Fang X., Wynne J.W., Xiong Z., Baker M.L., Zhao W., et al. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science. 2013;339:456–460. doi: 10.1126/science.1230835. PubMed DOI PMC

O’Shea T.J., Cryan P., Cunningham A.A., Fooks A.R., Hayman D.T.S., Luis A.D., Peel A.J., Plowright R.K., Wood J.L.N. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 2014;20:741–745. doi: 10.3201/eid2005.130539. PubMed DOI PMC

Flieger M., Bandouchova H., Cerny J., Chudickova M., Kolarik M., Kovacova V., Martinkova N., Novak P., Sebesta O., Stodulkova E., et al. Vitamin B-2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep. 2016;6:33200. doi: 10.1038/srep33200. PubMed DOI PMC

Carey H.V., Andrews M.T., Martin S.L. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 2003;83:1153–1181. doi: 10.1152/physrev.00008.2003. PubMed DOI

Storey K.B. Out Cold: Biochemical Regulation of Mammalian Hibernation—A Mini-Review. Gerontology. 2010;56:220–230. doi: 10.1159/000228829. PubMed DOI

Drew K.L., Osborne P.G., Frerichs K.U., Hu Y., Koren R.E., Hallenbeck J.M., Rice M.E. Ascorbate and glutathione regulation in hibernating ground squirrels. Brain Res. 1999;851:1–8. doi: 10.1016/S0006-8993(99)01969-1. PubMed DOI

Morin P., Jr., Ni Z., McMullen D.C., Storey K.B. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol. Cell. Biochem. 2008;312:121–129. doi: 10.1007/s11010-008-9727-3. PubMed DOI

Bouma H.R., Strijkstra A.M., Boerema A.S., Deelman L.E., Epema A.H., Hut R.A., Kroese F.G., Henning R.H. Blood cell dynamics during hibernation in the European Ground Squirrel. Vet. Immunol. Immunopathol. 2010;136:319–323. doi: 10.1016/j.vetimm.2010.03.016. PubMed DOI

Bouma H.R., Carey H.V., Kroese F.G.M. Hibernation: The immune system at rest? J. Leukoc. Biol. 2010;88:619–624. doi: 10.1189/jlb.0310174. PubMed DOI

Haitlinger R., Lupicki D. Arthropods (Acari, Siphonaptera, Heteroptera, Psocoptera) associated with Nyctalus noctula (Schreber, 1774) (Chiroptera: Vespertilionidae) in Southern Poland. Wiad. Parazytol. 2008;54:124–130. PubMed

Hornok S. Ixodes vespertilionis Koch, 1844 (Figs. 29–31) In: Estrada-Peña A., Mihalcs A.D., Petney T.N., editors. Ticks of Europe and North Africa. 1st ed. Springer; Berlin, Germany: 2017. pp. 97–107.

Lučan R.K., Bandouchova H., Bartonička T., Pikula J., Zahradníková A., Jr., Zukal J., Martínková N. Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasites Vectors. 2016;9:16. doi: 10.1186/s13071-016-1302-2. PubMed DOI PMC

George D.B., Webb C.T., Farnsworth M.L., O’Shea T.J., Bowen R.A., Smith D.L., Stanley T.R., Ellison L.E., Rupprecht C.E. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. USA. 2011;108:10208–10213. doi: 10.1073/pnas.1010875108. PubMed DOI PMC

Callait M.P., Gauthier D. Parasite adaptation to hibernation in Alpine Marmots (Marmota marmota) In: Heldmaier G., Klingenspor M., editors. Life in the Cold: Eleventh International Hibernation Symposium. 1st ed. Springer; Berlin, Germany: 2000. pp. 139–146.

Coggins J.R., Tedesco J.L., Rupprecht C.E. Seasonal changes and overwintering of parasites in the bat, Myotis lucifugus (Le Conte) in a Wisconsin hibernaculum. Am. Midl. Nat. 1982;107:305–315. doi: 10.2307/2425381. DOI

Ramírez J.D., Tapia-Calle G., Muñoz-Cruz G., Poveda C., Rendón L.M., Hincapié E., Guhl F. Trypanosome species in neo-tropical bats: Biological, evolutionary and epidemiological implications. Infect. Genet. Evol. 2014;22:250–256. doi: 10.1016/j.meegid.2013.06.022. PubMed DOI PMC

Barnabe C., Brisse S., Tibayrenc M. Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b nucleotide sequence analyses. Infect. Genet. Evol. 2003;2:201–208. doi: 10.1016/S1567-1348(02)00130-2. PubMed DOI

Lima L., da Silva F.M., Neves L., Attias M., Takata C.S.A., Campaner M., de Souza W., Hamilton P.B., Teixeira M.M.G. Evolutionary insights from bat trypanosomes: Morphological, developmental and phylogenetic evidence of a new species, Trypanosoma (Schizotrypanum) erneyi sp. nov., in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species. Protist. 2012;163:856–872. doi: 10.1016/j.protis.2011.12.003. PubMed DOI

Gardner R.A., Molyneux D.H., Stebbings R.E. Studies on the prevalence of haematozoa of British bats. Mammal. Rev. 1987;17:75–80. doi: 10.1111/j.1365-2907.1987.tb00051.x. DOI

Gardner R.A., Molyneux D.H. Babesia vesperuginis: Natural and experimental infections in British bats (Microchiroptera) Parasitology. 1987;95:461–469. doi: 10.1017/S0031182000057887. PubMed DOI

Bower S.M., Woo P.T.K. The development of Trypanosoma (Schizotrypanum) hedricki in Cimex brevis (Hemiptera: Cimicidae) Can. J. Zool. 1981;59:546–554. doi: 10.1139/z81-078. DOI

Hornok S., Szőke K., Kováts D., Estók P., Görföl T., Boldogh S.A., Takács N., Kontschán J., Földvári G., Barti L., et al. DNA of Piroplasms of ruminants and dogs in Ixodid bat ticks. PLoS ONE. 2016;11:e0167735. doi: 10.1371/journal.pone.0167735. PubMed DOI PMC

Simpson V.R. Veterinary advances in the investigation of wildlife diseases in Britain. Res. Vet. Sci. 2000;69:11–16. doi: 10.1053/rvsc.2000.0384. PubMed DOI

Oliveira M.P.C., Cortes M., Maeda F.Y., Fernandes M.C., Haapalainen E.F., Yoshida N., Mortara R.A. Unique behavior of Trypanosoma dionisii interacting with mammalian cells: Invasion, intracellular growth, and nuclear localization. Acta Trop. 2009;110:65–74. doi: 10.1016/j.actatropica.2009.01.008. PubMed DOI

Pikula J., Bandouchova H., Kovacova V., Linhart P., Piacek V., Zukal J. Reproduction of Rescued Vespertilionid Bats (Nyctalus noctula) in Captivity: Veterinary and Physiologic Aspects. Vet. Clin. N. Am. Exot. Anim. Pract. 2017;20:665–677. doi: 10.1016/j.cvex.2016.11.013. PubMed DOI

Bandouchova H., Bartonička T., Berkova H., Brichta J., Kokurewicz T., Kovacova V., Linhart P., Piacek V., Pikula J., Zahradníková A., et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 2018;8:6067. doi: 10.1038/s41598-018-24461-5. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Seward E.A., Votýpka J., Kment P., Lukeš J., Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168:71–79. doi: 10.1016/j.protis.2016.11.002. PubMed DOI

Zintl A., Finnerty E.J., Murphy T.M., de Waal T., Gray J.S. Babesias of red deer (Cervus elaphus) in Ireland. Vet. Res. 2011;42:7. doi: 10.1186/1297-9716-42-7. PubMed DOI PMC

Basic Local Alignment Search Tool (BLAST) [(accessed on 23 April 2019)]; Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi,

Chimelli L., Scaravilli F. Trypanosomiasis. Brain Pathol. 1997;7:599–611. doi: 10.1111/j.1750-3639.1997.tb01077.x. PubMed DOI PMC

Köster L.S., Lobetti R.G., Kelly P. Canine babesiosis: A perspective on clinical complications, biomarkers, and treatment. Vet. Med. 2015;6:119–128. doi: 10.2147/VMRR.S60431. PubMed DOI PMC

Jacobson L.S., Lobetti R. Glucose, lactate, and pyruvate concentrations in dogs with babesiosis. Am. J. Vet. Res. 2005;66:244–250. doi: 10.2460/ajvr.2005.66.244. PubMed DOI

Leisewitz A.L., Jacobson L.S., de Morais H.S.A., Reyers F. The Mixed Acid-Base Disturbances of Severe Canine Babesiosis. J. Vet. Intern. Med. 2001;15:445–452. doi: 10.1111/j.1939-1676.2001.tb01573.x. PubMed DOI

Bartlett S.L., Abou-Madi N., Messick J.B., Birkenheuer A., Kollias G.V. Diagnosis and Treatment of Babesia odocoilei in Captive Reindeer (Rangifer tarandus tarandus) and Recognition of Three Novel Host Species. J. Zoo Wildl. Med. 2009;40:152–159. doi: 10.1638/2008-0011.1. PubMed DOI

Usinger R.L. Monograph of Cimicidae (Hemiptera—Heteroptera) 1st ed. Entomological Society of America; New York, NY, USA: 1966. pp. 10–33.

Manzano-Román R., Díaz-Martín V., de la Fuente J., Pérez-Sánchez R. Soft ticks as pathogen vectors: Distribution, surveillance and control. In: Shah M.M., editor. Parasitology. 1st ed. InTechOpen; London, UK: 2012. pp. 125–162.

Balvín O., Ševčík M., Jahelková H., Bartonička T., Orlova M., Vilímková J. Transport of bugs of the genus Cimex (Heteroptera: Cimicidae) by bats in western Palaearctic. Vespertilio. 2012;16:43–54.

Cardoso M.S., Reis-Cunha J.L., Bartholomeu D.C. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front. Immunol. 2016;6:659. doi: 10.3389/fimmu.2015.00659. PubMed DOI PMC

Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009;40:37. doi: 10.1051/vetres/2009020. PubMed DOI PMC

Molyneux D.H. Trypanosomes of Bats. In: Kreier J.P., Baker J.R., editors. Parasitic Protozoa. 1st ed. Academic Press; New York, NY, USA: 1991. pp. 195–223.

Ponte-Sucre A. An Overview of Trypanosoma brucei Infections: An Intense Host–Parasite Interaction. Front. Microbiol. 2016;7:2126. doi: 10.3389/fmicb.2016.02126. PubMed DOI PMC

Lozano I.M.D., De Pablos L.M., Longhi S.A., Zago M.P., Schijman A.G., Osuna A. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci. Rep. 2017;7:44451. doi: 10.1038/srep44451. PubMed DOI PMC

Linhart P., Bandouchova H., Zukal J., Votypka J., Kokurewicz T., Dundarova H., Apoznanski G., Heger T., Kubickova A., Nemcova M., et al. Trypanosomes in Eastern and Central European bats. Acta Vet. Brno. 2020;89:69–78. doi: 10.2754/avb202089010069. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...