Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
TE 298/2015
UEFCDI Romania
PubMed
29208011
PubMed Central
PMC5718032
DOI
10.1186/s13071-017-2536-3
PII: 10.1186/s13071-017-2536-3
Knihovny.cz E-resources
- Keywords
- Babesia vesperuginis, Bats, Europe, Piroplasms, Tick-borne pathogens,
- MeSH
- Babesia genetics physiology MeSH
- Babesiosis epidemiology parasitology MeSH
- Chiroptera parasitology MeSH
- Phylogeny * MeSH
- Heart parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe epidemiology MeSH
BACKGROUND: Babesia spp. are hemoparasites which infect the red blood cells of a large variety of mammals. In bats, the only known species of the genus is Babesia vesperuginis. However, except a few old reports, the host range and geographical distribution of this bat parasite have been poorly studied. This study aimed to investigate the presence of piroplasms in tissues of bats collected in four different countries from eastern and central Europe: Austria, Czech Republic, Hungary and Romania. METHODS: A total of 461 bat carcasses (24 species) were collected between 2001 and 2016 from caves, mines and buildings. PCR was performed using specific primers targeting a portion of the 18S rDNA nuclear gene and cytochrome c oxidase subunit 1 mitochondrial gene, followed by sequencing. RESULTS: The results of this study show for the first time the presence of B. vesperuginis in bats in central and eastern Europe. The phylogenetic analysis of the 18S rDNA nuclear gene revealed no variability between the sequences and the phylogenetic analysis of the cox1 mitochondrial gene proved that B. vesperuginis could be divided into two subclades. CONCLUSION: Our study showed a broad geographical distribution of B. vesperuginis in European bats, reporting its presence in five new host species (M. cf. alcathoe, M. bechsteinii, M. myotis, Pi. nathusii and V. murinus) and three new countries.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
CEITEC VFU University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
Department of Parasitology and Zoology University of Veterinary Medicine Budapest Hungary
Department of Virology Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
Faculty of Biology and Geology University Babes Bolyai Cluj Napoca Romania
Institute of Speleology 'Emil Racoviţă' Cluj Napoca Romania
Museum of Natural History Vienna Austria
Romanian Bat Protection Association Central Branch Odorheiu Secuiesc Romania
See more in PubMed
Tsang SM, Cirranello AL, Bates PJ, Simmons NB. The roles of taxonomy and systematics in bat conservation. In: Voight C, Kingston T, editors. Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham. 2016. pp. 503–538.
Castilho JG, De Souza DN, Oliveira RN, Carnieli PJ, Batista HB, Pereira PM, et al. The epidemiological importance of bats in the transmission of rabies to dogs and cats in the state of Säo Paulo, Brazil, between 2005 and 2014. Zoonoses Public Health. 2017;64(6):423–430. doi: 10.1111/zph.12320. PubMed DOI
Schneider MC, Romijn PC, Uieda W, Tamayo H, da Silva DF, Belotto A, et al. Rabies transmitted by vampire bats to humans: an emerging zoonotic disease in Latin America? Rev Panam Salud Publica. 2009;25(3):260–9. PubMed
Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Vir. 2010;84(21):11336–49. PubMed PMC
Brook CE, Dobson AP. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23(3):172–180. doi: 10.1016/j.tim.2014.12.004. PubMed DOI PMC
Kading RC, Schountz T. Flavivirus infections of bats: potential role in Zika virus ecology. Am J. Med Hyg. 2016;95(5):993–996. doi: 10.4269/ajtmh.16-0625. PubMed DOI PMC
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19(3):531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC
Hornok S, Estók P, Kováts D, Flaisz B, Takács N, Szȍke K, et al. Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasit Vectors. 2015;8:441. doi: 10.1186/s13071-015-1052-6. PubMed DOI PMC
Hornok S, Szőke K, Kováts D, Estók P, Gőrfől T, Boldogh SA, et al. DNA of piroplasms of ruminants and dogs in ixodid bat ticks. PLoS One. 2016;11(12):e0167735. PubMed PMC
Bai Y, Urushadze L, Osikowicz L, McKee C, Kuzmin I, Kandaurov A, et al. Molecular survey of bacterial zoonotic agents in bats from the country of Georgia (Caucasus) PLoS One. 2017;12(1):e0171175. doi: 10.1371/journal.pone.0171175. PubMed DOI PMC
Mühldorfer K. Bats and bacterial pathogens: a review. Zoonoses Public Health. 2013;60(1):93–103. doi: 10.1111/j.1863-2378.2012.01536.x. PubMed DOI
Solano-Gallego L, Baneth G. Babesiosis in dogs and cats - expanding parasitological and clinical spectra. Vet Parasitol. 2011;181(1):48–60. PubMed
Dionisi A. Les parasites endoglobulaires des chauves-souris. Atti della Reale Academia dei Lincei. 1898;7:153–156.
Dionisi A. La malaria di alcuni specie di pipistrelli. Atti della Societa per gli studi Malaria. 1899;1:133–173.
Gardner RA, Molyneux DH, Stebbings RE. Studies on the prevalence of haematozoa of British bats. Mammal Rev. 1987;173:75–80. doi: 10.1111/j.1365-2907.1987.tb00051.x. DOI
Gardner RA, Molyneux DH. Babesia vesperuginis: natural and experimental infections in British bats (Microchiroptera) Parasitology. 1987;95:461–469. doi: 10.1017/S0031182000057887. PubMed DOI
Concannon R, Wynn-Owen K, Simpson VR, Birtles RJ. Molecular characterization of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. Parasitology. 2005;131(Pt 4):489–496. doi: 10.1017/S0031182005008097. PubMed DOI
Marinkelle CJ. Babesia sp. in Colombian bats (Microchiroptera) J Wildl Dis. 1996;32(3):534–535. doi: 10.7589/0090-3558-32.3.534. PubMed DOI
Dietz C, Nill D, von Helversen O. Bats of Britain, Europe and Northwest Africa. London: A&C Black; 2009.
Bogdanowicz W, Piksa K, Tereba A. Hybridization hotspots at bat swarming sites. PLoS One. 2012;7(12):e53334. doi: 10.1371/journal.pone.0053334. PubMed DOI PMC
Hodžić A, Alić A, Fuehrer HP, Harl J, Wille-Piazzai W, Duscher GGA. Molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit Vectors. 2015;8:88. doi: 10.1186/s13071-015-0692-x. PubMed DOI PMC
Zintl A, Finnerty EJ, Murphy TM, De Waal T, Gray JS. Babesias of red deer (Cervus elaphus) in Ireland. Vet Res. 2011;42:7. doi: 10.1186/1297-9716-42-7. PubMed DOI PMC
Gou H, Guan G, Liu A, Ma M, Xu Z, Liu Z, et al. A DNA barcode for Piroplasmea. Acta Trop. 2012;124(1):92–97. doi: 10.1016/j.actatropica.2012.07.001. PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Guindon S, Gascuel OA. Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704. doi: 10.1080/10635150390235520. PubMed DOI
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12(8):1788–1809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI
Danko Š, Krištin A, Krištofik J.
Lučan RK, Andreas M, Benda P, Bartonička T, Březinová T, Hoffmannová A, et al. Alcathoe bat (Myotis alcathoe) in the Czech Republic: distributional status, roosting and feeding ecology. Acta Chiropterol. 2009;11(1):61–69. doi: 10.3161/150811009X465695. DOI
Krüger F, Clare EL, Symondson WOC, Keišs O, Peterson G. Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Mol Ecol. 2014;23(15):3672–3683. doi: 10.1111/mec.12547. PubMed DOI
Fenton MB, Bogdanowicz W. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Can J Zool. 2002;80(6):1004–1013. doi: 10.1139/z02-083. DOI
Hoogstraal H. Bat ticks of the genus Argas (Ixodoidea, Argasidae). The subgenus Carios. A redescription of A. (C.) vespertilionis (Latreille, 1802), and variation within an Egyptian population. Ann Ent Soc Am. 1958;51:19–26. doi: 10.1093/aesa/51.1.19. DOI
Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Pena A, Horak IG, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa. 2010;2528:1–28.
Voigt CC, Sorgel K, Suba J, Keiss O, Petersons G. The insectivorous bat Pipistrellus nathusii uses a mixed- fuel strategy to power autumn migration. Proc Biol Sci. 2012;279(1743):3772–3778. doi: 10.1098/rspb.2012.0902. PubMed DOI PMC
Hunfeld KP, Hildebrandt A, Gray JS. Babesiosis: recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219–1237. doi: 10.1016/j.ijpara.2008.03.001. PubMed DOI
Gunders AE, Hadani A. An argasid tick, Ornithodoros erraticus (Lucas) a natural vector of Nuttallia meri. Z Tropenmed Parasit. 1973;24(4):536–538. PubMed
Battsetseg B, Matsuo T, Xuan X, Boldbaatar D, Chee SH. Babesia parasites develop and are transmitted by the non-vector soft tick Ornithodoros moubata (Acari: Argasidae) Parasitology. 2006;134(Pt 1):1–8. PubMed