Babesia pisicii n. sp. and Babesia canis Infect European Wild Cats, Felis silvestris, in Romania
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCCDI 57/2018 (Andrei Daniel Mihalca)
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
CEITEC 2020 (LQ1601)
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000787 "Fighting Infectious Diseases" (Kristýna Hrazdilová)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34361906
PubMed Central
PMC8308005
DOI
10.3390/microorganisms9071474
PII: microorganisms9071474
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA, Babesia pisicii n. sp., European wild felids, mitochondrial genes, piroplasmids,
- Publikační typ
- časopisecké články MeSH
Haemoparasites of the genus Babesia infect a wide range of domestic and wild animals. Feline babesiosis is considered endemic in South Africa, while data on Babesia spp. infection in felids in Europe is scarce. Using samples from 51 wild felids, 44 Felis silvestris and 7 Lynx lynx, the study aimed to determine the presence and genetic diversity of Babesia spp. in wild felids in Romania by analyzing the 18S rDNA and two mitochondrial markers, cytochrome b (Cytb) and cytochrome c oxidase subunit I (COI) genes. By 18S rDNA analyses, Babesia spp. DNA was detected in 20 European wild felids. All sequences showed 100% similarity to B. canis by BLAST analysis. Conversely, Cytb and COI analyses revealed the presence of two Babesia spp., B. pisicii n. sp., which we herein describe, and B. canis. The pairwise comparison of both mitochondrial genes of B. pisicii n. sp. showed a genetic distance of at least 10.3% from the most closely related species, B. rossi. Phylogenetic analyses of Cytb and COI genes revealed that B. pisicii n. sp. is related to the so-called "large" canid-associated Babesia species forming a separate subclade in a sister position to B. rossi.
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Plzeň Czech Republic
CEITEC VETUNI University of Veterinary Sciences Brno 61242 Brno Czech Republic
Grigore Antipa National Museum of Natural History 011341 Bucharest Romania
Zobrazit více v PubMed
Alvarado-Rybak M., Solano-Gallego L., Millán J. A review of piroplasmid infections in wild carnivores worldwide: Importance for domestic animal health and wildlife conservation. Parasites Vectors. 2016;9:538. doi: 10.1186/s13071-016-1808-7. PubMed DOI PMC
Schnittger L., Rodriguez A.E., Florin-Christensen M., Morrison D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012;12:1788–1809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI
Yabsley M.J., Shock B.C. Natural history of zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2013;2:18–31. doi: 10.1016/j.ijppaw.2012.11.003. PubMed DOI PMC
Vannier E., Gewurz B.E., Krause P.J. Human babesiosis. Infect. Dis. Clin. N. Am. 2008;22:469–488. doi: 10.1016/j.idc.2008.03.010. PubMed DOI PMC
Young K.M., Corrin T., Wilhelm B., Uhland C., Greig J., Mascarenhas M., Waddell L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE. 2019;14:e0226781. doi: 10.1371/journal.pone.0226781. PubMed DOI PMC
Babeş V. Sur l’hemoglobinurie bacterienne du boeuf (On the bacterian hemoglobinuria of cattle) (in French) C. R. Hebd. Acad. Sci. 1888;107:692–694.
Mihalca A.D., Cozma V., Şuteu E., Marinculic A., Boireau P. The quest for piroplasms: From Babeş and Smith to molecules. Sci. Parasitol. 2010;11:14–19.
Hrazdilová K., Rybářová M., Široký P., Votypka J., Zintl A., Burgess H., Steinbauer V., Žákovčík V., Modrý D. Diversity of Babesia spp. in cervid ungulates based on the 18S rDNA and cytochrome c oxidase subunit I phylogenies. Infect. Genet. Evol. 2020;77:104060. doi: 10.1016/j.meegid.2019.104060. PubMed DOI
Panait L.C., Mihalca A.D., Modrý D., Juránková J., Ionică A.M., Deak G., Gherman C.M., Heddergott M., Hodžić A., Veronesi F., et al. Three new species of Cytauxzoon in European wild felids. Vet. Parasitol. 2021;290:109344. doi: 10.1016/j.vetpar.2021.109344. PubMed DOI
Ayoob A.L., Prittie J., Hackner S.G. Feline babesiosis. J. Vet. Emerg. Crit. Care. 2010;20:90–97. doi: 10.1111/j.1476-4431.2009.00493.x. PubMed DOI
Davis L. On a piroplasm of the Sudanese wild cat (Felis ocreata) Trans. R. Soc. Trop. Med. Hyg. 1929;22:535–537. doi: 10.1016/S0035-9203(29)90042-0. DOI
Mudaliar S.V., Achary G.R., Alwar V.S. On a species of Babesia in an Indian wild cat (Felis catus) Indian Vet. J. 1950;26:392–395. PubMed
Dennig H.K. Babesia infections in exotic cats and the significance of these blood parasites for veterinary research. Acta Zool. Pathol. Antverp. 1969;48:361–367. PubMed
Dennig H.K., Brocklesby D.W. Babesia pantherae sp. nov., a piroplasm of the leopard (Panthera pardus) Parasitology. 1972;64:525–532. doi: 10.1017/S0031182000045595. PubMed DOI
Penzhorn B.L., Kjemtrup A.M., Lopez-Rebollar L.M., Conrad P.A. Babesia leo n. sp. from lions in the Kruger National Park, South Africa, and its relation to other small piroplasms. J. Parasitol. 2001;87:681. doi: 10.1645/0022-3395(2001)087[0681:BLNSFL]2.0.CO;2. PubMed DOI
Bosman A.-M., Oosthuizen M.C., Peirce M.A., Venter E.H., Penzhorn B.L. Babesia lengau sp. nov., a novel Babesia species in cheetah (Acinonyx jubatus, Schreber, 1775) populations in South Africa. J. Clin. Microbiol. 2010;48:2703–2708. doi: 10.1128/JCM.02266-09. PubMed DOI PMC
Bosman A.-M., Penzhorn B.L., Brayton K.A., Schoeman T., Oosthuizen M.C. A novel Babesia sp. associated with clinical signs of babesiosis in domestic cats in South Africa. Parasites Vectors. 2019;12:138. doi: 10.1186/s13071-019-3395-x. PubMed DOI PMC
Baneth G., Kenny M.J., Tasker S., Anug Y., Shkap V., Levy A., Shaw S.E. Infection with a proposed new subspecies of Babesia canis, Babesia canis subsp. presentii, in domestic cats. J. Clin. Microbiol. 2004;42:99–105. doi: 10.1128/JCM.42.1.99-105.2004. PubMed DOI PMC
Wong S.S.Y., Poon R.W.S., Hui J.J.Y., Yuen K.-Y. Detection of Babesia hongkongensis sp. nov. in a free-roaming Felis catus cat in Hong Kong. J. Clin. Microbiol. 2012;50:2799–2803. doi: 10.1128/JCM.01300-12. PubMed DOI PMC
Criado-Fornelio A., Martinez-Marcos A., Buling-Saraña A., Barba-Carretero J. Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: A molecular study. Vet. Microbiol. 2003;93:307–317. doi: 10.1016/S0378-1135(03)00044-0. PubMed DOI
André M.R., Denardi N.C.B., de Sousa K.C.M., Gonçalves L.R., Henrique P.C., Ontivero C.R.G.R., Gonzalez I., Nery C.V.C., Chagas C.R.F., Monticelli C., et al. Arthropod-borne pathogens circulating in free-roaming domestic cats in a zoo environment in Brazil. Ticks Tick-Borne Dis. 2014;5:545–551. doi: 10.1016/j.ttbdis.2014.03.011. PubMed DOI
Spada E., Proverbio D., Galluzzo P., Perego R., De Giorgi G.B., Roggero N., Caracappa S. Frequency of piroplasms Babesia microti and Cytauxzoon felis in stray cats from northern Italy. BioMed Res. Int. 2014;2014:943754. doi: 10.1155/2014/943754. PubMed DOI PMC
Kelly P.J., Köster L., Liza K., Zhang J., Huang K., Branford G.C., Marchi S., Vandenplas M., Wang C. Survey of vector-borne agents in feral cats and first report of Babesia gibsoni in cats on St Kitts, West Indies. BMC Vet. Res. 2017;13:331. doi: 10.1186/s12917-017-1230-1. PubMed DOI PMC
Hodžić A., Alić A., Duscher G.G. High diversity of blood-associated parasites and bacteria in European wild cats in Bosnia and Herzegovina: A molecular study. Ticks Tick-Borne Dis. 2018;9:589–593. doi: 10.1016/j.ttbdis.2018.01.017. PubMed DOI
Diakou A., Dimzas D., Astaras C., Savvas I., Di Cesare A., Morelli S., Neofitos Κ., Migli D., Traversa D. Clinical investigations and treatment outcome in a European wildcat (Felis silvestris silvestris) infected by cardio-pulmonary nematodes. Vet. Parasitol. Reg. Stud. Rep. 2020;19:100357. doi: 10.1016/j.vprsr.2019.100357. PubMed DOI
Vilhena H., Martinez-Díaz V.L., Cardoso L., Vieira L., Altet L., Francino O., Pastor J., Silvestre-Ferreira A.C. Feline vector-borne pathogens in the north and centre of Portugal. Parasites Vectors. 2013;6:99. doi: 10.1186/1756-3305-6-99. PubMed DOI PMC
Maia C., Ramos C., Coimbra M., Bastos F., Martins Â., Pinto P., Nunes M., Vieira M.L., Cardoso L., Campino L. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasites Vectors. 2014;7:115. doi: 10.1186/1756-3305-7-115. PubMed DOI PMC
Solano-Gallego L., Sainz Á., Roura X., Peña A.E., Miró G. A review of canine babesiosis: The European perspective. Parasites Vectors. 2016;9:336. doi: 10.1186/s13071-016-1596-0. PubMed DOI PMC
Gallusovã¡ M., Jirsovã¡ D., Mihalca A.D., Gherman C.M., D’Amico G., Qablan M.A., Modrý D. Cytauxzoon infections in wild felids from Carpathian-Danubian-Pontic space: Further evidence for a different Cytauxzoon species in European felids. J. Parasitol. 2016;102:377–380. doi: 10.1645/15-881. PubMed DOI
Kitchener A.C., Yamaguchi N., Ward J.M., Macdonald D.W. A diagnosis for the Scottish wildcat (Felis silvestris): A tool for conservation action for a critically-endangered felid. Anim. Conserv. 2005;8:223–237. doi: 10.1017/S1367943005002301. DOI
Petrisor A.-I., Ianos I., Tălângă C. Land cover and use changes focused on the urbanization processes in Romania. Environ. Eng. Manag. J. 2010;9:765–771. doi: 10.30638/eemj.2010.102. DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Sgroi G., Iatta R., Veneziano V., Bezerra-Santos M.A., Lesiczka P., Hrazdilová K., Annoscia G., D’Alessio N., Golovchenko M., Rudenko N., et al. Molecular survey on tick-borne pathogens and Leishmania infantum in red foxes (Vulpes vulpes) from southern Italy. Ticks Tick-Borne Dis. 2021;12:101669. doi: 10.1016/j.ttbdis.2021.101669. PubMed DOI
Hrazdilová K., Myśliwy I., Hildebrand J., Buńkowska-Gawlik K., Janaczyk B., Perec-Matysiak A., Modrý D. Paralogs vs. genotypes? Variability of Babesia canis assessed by 18S rDNA and two mitochondrial markers. Vet. Parasitol. 2019;266:103–110. doi: 10.1016/j.vetpar.2018.12.017. PubMed DOI
Jalovecka M., Sojka D., Ascencio M., Schnittger L. Babesia life cycle—When phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI
Nguyen L.-T., Schmidt H.A., Von Haeseler A., Minh B. Q IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh B.Q., Nguyen M.A.T., Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
ICZN. International Commission on Zoological Nomenclature Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bull. Zool. Nomencl. 2012;69:161–169. doi: 10.21805/bzn.v69i3.a8.161. PubMed DOI
Schreeg M.E., Marr H.S., Tarigo J.L., Cohn L.A., Bird D.M., Scholl E.H., Levy M.G., Wiegmann B.M., Birkenheuer A. Mitochondrial genome sequences and structures aid in the resolution of Piroplasmida phylogeny. PLoS ONE. 2016;11:e0165702. doi: 10.1371/journal.pone.0165702. PubMed DOI PMC
Penzhorn B.L., Oosthuizen M.C. Babesia species of domestic cats: Molecular characterization has opened Pandora’s box. Front. Vet. Sci. 2020;7:134. doi: 10.3389/fvets.2020.00134. PubMed DOI PMC
Decaro N., Larocca V., Parisi A., Losurdo M., Lia R.P., Greco M.F., Miccolis A., Ventrella G., Otranto D., Buonavoglia C. Clinical bovine piroplasmosis caused by Babesia occultans in Italy. J. Clin. Microbiol. 2013;51:2432–2434. doi: 10.1128/JCM.00713-13. PubMed DOI PMC
Toma-Naic A., Györk A., Nedișan M.E., Borșan S.D., Berar C., Bojan A., Cozma V. Babesiosis in a 7-week-old calf: Case report. Sci. Parasitol. 2018;19:40–44.
Criado-Fornelio A., Martinez-Marcos A., Buling-Saraña A., Barba-Carretero J. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe: Part II. Phylogenetic analysis and evolutionary history. Vet. Parasitol. 2003;113:189–201. doi: 10.1016/S0304-4017(03)00078-5. PubMed DOI
Gray A., Capewell P., Loney C., Katzer F., Shiels B.R., Weir W. Sheep as host species for zoonotic Babesia venatorum, United Kingdom. Emerg. Infect. Dis. 2019;25:2257–2260. doi: 10.3201/eid2512.190459. PubMed DOI PMC
Manna G., Cersini A., Nardini R., Del Pino L.E.B., Antognetti V., Zini M., Conti R., Lorenzetti R., Veneziano V., Autorino G.L., et al. Genetic diversity of Theileria equi and Babesia caballi infecting horses of Central-Southern Italy and preliminary results of its correlation with clinical and serological status. Ticks Tick-Borne Dis. 2018;9:1212–1220. doi: 10.1016/j.ttbdis.2018.05.005. PubMed DOI
Zobba R., Parpaglia M.L.P., Spezzigu A., Pittau M., Alberti A. First molecular identification and phylogeny of a Babesia sp. from a symptomatic sow (Sus scrofa Linnaeus 1758) J. Clin. Microbiol. 2011;49:2321–2324. doi: 10.1128/JCM.00312-11. PubMed DOI PMC
Obiegala A., Pfeffer M., Pfister K., Karnath C., Silaghi C. Molecular examinations of Babesia microti in rodents and rodent-attached ticks from urban and sylvatic habitats in Germany. Ticks Tick-Borne Dis. 2015;6:445–449. doi: 10.1016/j.ttbdis.2015.03.005. PubMed DOI
Rocchigiani G., Ebani V.V., Nardoni S., Bertelloni F., Bascherini A., Leoni A., Mancianti F., Poli A. Molecular survey on the occurrence of arthropod-borne pathogens in wild brown hares (Lepus europaeus) from Central Italy. Infect. Genet. Evol. 2018;59:142–147. doi: 10.1016/j.meegid.2018.02.005. PubMed DOI
Silaghi C., Woll D., Hamel D., Pfister K., Mahling M., Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents—Analyzing the host-pathogen-vector interface in a metropolitan area. Parasites Vectors. 2012;5:191. doi: 10.1186/1756-3305-5-191. PubMed DOI PMC
Corduneanu A., Hrazdilová K., Sándor A.D., Matei I.A., Ionică A.M., Barti L., Ciocănău M.-A., Măntoiu D.Ș., Coroiu I., Hornok S., et al. Babesia vesperuginis, a neglected piroplasmid: New host and geographical records, and phylogenetic relations. Parasites Vectors. 2017;10:598. doi: 10.1186/s13071-017-2536-3. PubMed DOI PMC
Cacciò S.M., Antunovic B., Moretti A., Mangili V., Marinculic A., Baric R.R., Slemenda S.B., Pieniazek N.J. Molecular characterisation of Babesia canis canis and Babesia canis vogeli from naturally infected European dogs. Vet. Parasitol. 2002;106:285–292. doi: 10.1016/S0304-4017(02)00112-7. PubMed DOI
Erdélyi K., Mezősi L., Vladov S., Földvári G. Fatal acute babesiosis in captive grey wolves (Canis lupus) due to Babesia canis. Ticks Tick-Borne Dis. 2014;5:281–283. doi: 10.1016/j.ttbdis.2013.11.003. PubMed DOI
Mitková B., Hrazdilová K., D’Amico G., Duscher G.G., Suchentrunk F., Forejtek P., Gherman C.M., Matei I.A., Ionică A.M., Daskalaki A.A., et al. Eurasian golden jackal as host of canine vector-borne protists. Parasites Vectors. 2017;10:183. doi: 10.1186/s13071-017-2110-z. PubMed DOI PMC
Hodžić A., Mrowietz N., Cézanne R., Bruckschwaiger P., Punz S., Habler V.E., Tomsik V., Lazar J., Duscher G.G., Glawischnig W., et al. Occurrence and diversity of arthropod-transmitted pathogens in red foxes (Vulpes vulpes) in western Austria, and possible vertical (transplacental) transmission of Hepatozoon canis. Parasitology. 2018;145:335–344. doi: 10.1017/S0031182017001536. PubMed DOI
Santoro M., Auriemma C., Lucibelli M.G., Borriello G., D’Alessio N., Sgroi G., Veneziano V., Galiero G., Fusco G. Molecular detection of Babesia spp. (Apicomplexa: Piroplasma) in free-ranging canids and mustelids from Southern Italy. Front. Vet. Sci. 2019;6:269. doi: 10.3389/fvets.2019.00269. PubMed DOI PMC
Carli E., Trotta M., Chinelli R., Drigo M., Sinigoi L., Tosolini P., Furlanello T., Millotti A., Caldin M., Solano-Gallego L. Cytauxzoon sp. infection in the first endemic focus described in domestic cats in Europe. Vet. Parasitol. 2012;183:343–352. doi: 10.1016/j.vetpar.2011.07.025. PubMed DOI
Veronesi F., Ravagnan S., Cerquetella M., Carli E., Olivieri E., Santoro A., Pesaro S., Berardi S., Rossi G., Ragni B., et al. First detection of Cytauxzoon spp. infection in European wildcats (Felis silvestris silvestris) of Italy. Ticks Tick-Borne Dis. 2016;7:853–858. doi: 10.1016/j.ttbdis.2016.04.003. PubMed DOI
Díaz-Regañón D., Villaescusa A., Ayllón T., Rodríguez-Franco F., Baneth G., Calleja-Bueno L., García-Sancho M., Agulla B., Sainz Á. Molecular detection of Hepatozoon spp. and Cytauxzoon sp. in domestic and stray cats from Madrid, Spain. Parasites Vectors. 2017;10:112. doi: 10.1186/s13071-017-2056-1. PubMed DOI PMC
Meli M.L., Cattori V., Martínez F., López G., Vargas A., Simón M.A., Zorrilla I., Muñoz A., Palomares F., López-Bao J.V., et al. Feline leukemia virus and other pathogens as important threats to the survival of the critically endangered Iberian lynx (Lynx pardinus) PLoS ONE. 2009;4:e4744. doi: 10.1371/journal.pone.0004744. PubMed DOI PMC
Hodžić A., Alić A., PraŠović S., Otranto D., Baneth G., Duscher G.G. Hepatozoon silvestris sp. nov.: Morphological and molecular characterization of a new species of Hepatozoon (Adeleorina: Hepatozoidae) from the European wild cat (Felis silvestris silvestris) Parasitology. 2017;144:650–661. doi: 10.1017/S0031182016002316. PubMed DOI PMC
Corduneanu A., Sándor A.D., Mihalca A.D., Hrazdilová K., Modrý D., Hornok S. Molecular evidence of canine pathogens in tissues of European bats; Proceedings of the 17th International Bat Research Conference; Durban, South Africa. 31 July–5 August 2016; pp. 50–51.
Zanet S., Bassano M., Trisciuoglio A., Taricco I., Ferroglio E. Horses infected by Piroplasms different from Babesia caballi and Theileria equi: Species identification and risk factors analysis in Italy. Vet. Parasitol. 2017;236:38–41. doi: 10.1016/j.vetpar.2017.01.003. PubMed DOI
Uilenberg G., Gray J., Kahl O. Research on Piroplasmorida and other tick-borne agents: Are we going the right way? Ticks Tick-Borne Dis. 2018;9:860–863. doi: 10.1016/j.ttbdis.2018.03.005. PubMed DOI
Corduneanu A., Ursache T.D., Taulescu M., Sevastre B., Modrý D., Mihalca A.D. Detection of DNA of Babesia canis in tissues of laboratory rodents following oral inoculation with infected ticks. Parasites Vectors. 2020;13:166. doi: 10.1186/s13071-020-04051-z. PubMed DOI PMC
Jörger K.M., Schrödl M. How to describe a cryptic species? Practical challenges of molecular taxonomy. Front. Zool. 2013;10:59. doi: 10.1186/1742-9994-10-59. PubMed DOI PMC
Greay T.L., Zahedi A., Krige A.-S., Owens J.M., Rees R.L., Ryan U.M., Oskam C.L., Irwin P.J. Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasites Vectors. 2018;11:197. doi: 10.1186/s13071-018-2775-y. PubMed DOI PMC
D’Amico G., Dumitrache M.O., Matei I.A., Ionică A.M., Gherman C.M., Sándor A.D., Modrý D., Mihalca A.D. Ixodid ticks parasitizing wild carnivores in Romania. Exp. Appl. Acarol. 2017;71:139–149. doi: 10.1007/s10493-017-0108-z. PubMed DOI