Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
706196
H2020 Marie Skłodowska-Curie Actions
PubMed
31506746
PubMed Central
PMC6763535
DOI
10.1007/s00442-019-04499-6
PII: 10.1007/s00442-019-04499-6
Knihovny.cz E-zdroje
- Klíčová slova
- Host–pathogen interaction, Infection, Opportunistic pathogen, Resistance, Tolerance,
- MeSH
- Chiroptera * MeSH
- hibernace * MeSH
- mykózy * MeSH
- RNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- RNA MeSH
Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival.
Biology Department Bucknell University Lewisburg PA USA
Department of Biological Sciences Ohio University Athens OH USA
Department of Biology University of Turku Turku Finland
Department of Botany and Zoology Masaryk University Brno Czech Republic
Finnish Museum of Natural History University of Helsinki Helsinki Finland
Institute of Integrative Biology University of Liverpool Liverpool UK
Zobrazit více v PubMed
Abbott RC, Saindon L, Falendysz EA, et al. Rabies outbreak in captive big brown bats (Eptesicus fuscus) used in a white-nose syndrome vaccine trial. J Wildl Dis. 2019 doi: 10.7589/2018-10-258. PubMed DOI
Bandouchova H, Bartonicka T, Berkova H, et al. Pseudogymnoascus destructans: evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound Emerg Dis. 2015;62:1–5. doi: 10.1111/tbed.12282. PubMed DOI
Bandouchova H, Bartonička T, Berkova H, et al. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep. 2018;8:6067. doi: 10.1038/s41598-018-24461-5. PubMed DOI PMC
Bernard RF, Foster JT, Willcox EV, et al. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J Wildl Dis. 2015;51:519–522. doi: 10.7589/2014-08-202. PubMed DOI
Blehert DS, Hicks AC, Behr M, et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. 2009;323:227. doi: 10.1126/science.1163874. PubMed DOI
Boots M, Bowers RG. Three mechanisms of host resistance to microparasites—avoidance, recovery and tolerance—show different evolutionary dynamics. J Theor Biol. 1999;201:13–23. doi: 10.1006/jtbi.1999.1009. PubMed DOI
Busby MA, Stewart C, Miller CA, et al. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics. 2013;29:656–657. doi: 10.1093/bioinformatics/btt015. PubMed DOI PMC
Campana M, Kurata N, Foster JT, et al. White-nose syndrome fungus in a 1918 bat specimen from France. Emerg Infect Dis J. 2017;23:1–1. doi: 10.3201/eid2309.170875. PubMed DOI PMC
Cheng TL, Gerson A, Moore MS, et al. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J Anim Ecol. 2019 doi: 10.1111/1365-2656.12954. PubMed DOI
Cornelison CT, Gabriel KT, Barlament C, Crow SA. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia. 2014;177:1–10. doi: 10.1007/s11046-013-9716-2. PubMed DOI
Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science. 2000;287:443–449. doi: 10.1126/science.287.5452.443. PubMed DOI
Davy CM, Donaldson ME, Willis CKR, et al. The other white-nose syndrome transcriptome: tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans. Ecol Evol. 2017 doi: 10.1002/ece3.3234. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Dobony CA, Johnson JB. Observed resiliency of little brown myotis to long-term white-nose syndrome exposure. J Fish Wildl Manag. 2018;9:168–179. doi: 10.3996/102017-JFWM-080. DOI
Drees KP, Palmer JM, Sebra R, et al. Use of multiple sequencing technologies to produce a high-quality genome of the fungus Pseudogymnoascus destructans, the causative agent of bat white-nose syndrome. Genome Announc. 2016 doi: 10.1128/genomeA.00445-16. PubMed DOI PMC
Eskew EA, Todd BD. Parallels in amphibian and bat declines from pathogenic fungi. Emerg Infect Dis. 2013;19:379–385. doi: 10.3201/eid1093.120707. PubMed DOI PMC
European Environment Agency . Climate change, impacts and vulnerability in Europe 2016. Luxembourg: Publications Office of the European Union; 2016.
Ferreira A, Marguti I, Bechmann I, et al. Sickle hemoglobin confers tolerance to plasmodium infection. Cell. 2011;145:398–409. doi: 10.1016/j.cell.2011.03.049. PubMed DOI
Field KA, Johnson J, Lilley T, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating bats. PLoS Pathog. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC
Field KA, et al. Quantification of pathogen levels is necessary to compare responses to pathogen exposure: comment on Davy et al. “The other white-nose syndrome transcriptome”. Ecol Evol. 2018;8:5235–5237. doi: 10.1002/ece3.4034. PubMed DOI PMC
Field KA, Sewall BJ, Prokkola JM, et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol. 2018 doi: 10.1111/mec.14827. PubMed DOI
Frank CL, Sitler-Elbel KG, Hudson AJ, Ingala MR. The antifungal properties of epidermal fatty acid esters: insights from white-nose syndrome (WNS) in bats. Molecules. 2018;23:1986. doi: 10.3390/molecules23081986. PubMed DOI PMC
Frick WF, Pollock JF, Hicks AC, et al. An emerging disease causes regional population collapse of a common North American bat species. Science. 2010;329:679–682. doi: 10.1126/science.1188594. PubMed DOI
Frick WF, Cheng TL, Langwig KE, et al. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence. Ecology. 2017;98:624–631. doi: 10.1002/ecy.1706. PubMed DOI
Gallana M, Ryser-Degiorgis M-P, Wahli T, Segner H. Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Curr Zool. 2013;59:427–437. doi: 10.1093/czoolo/59.3.427. DOI
Ganeshan K, Nikkanen J, Man K, et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell. 2019 doi: 10.1016/j.cell.2019.01.050. PubMed DOI PMC
Hallmann CA, Sorg M, Jongejans E, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One. 2017;12:e0185809. doi: 10.1371/journal.pone.0185809. PubMed DOI PMC
Harazim M, Horáček I, Jakešová L, et al. Natural selection in bats with historical exposure to white-nose syndrome. BMC Zool. 2018;3:8. doi: 10.1186/s40850-018-0035-4. DOI
Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol. 2013;16:366–373. doi: 10.1016/j.mib.2013.05.004. PubMed DOI PMC
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–127. doi: 10.1093/biostatistics/kxj037. PubMed DOI
Johnson JS, Reeder DM, McMichael JW, III, et al. Host, pathogen, and environmental characteristics predict white-nose syndrome mortality in captive little brown myotis (Myotis lucifugus) PLoS One. 2014;9:e112502. doi: 10.1371/journal.pone.0112502. PubMed DOI PMC
Johnson JS, Reeder DM, Lilley TM, et al. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome. Ecol Evol. 2015 doi: 10.1002/ece3.1502. PubMed DOI PMC
Johnson JS, Scafini M, Sewall BJ, Turner GG. Hibernating bat species in Pennsylvania use colder winter habitats following the arrival of white-nose syndrome. In: Butchkoski CM, Reeder DM, Turner GG, Whidden HP, editors. Conservation and Ecology of Pennsylvania’s Bats. Bradford: The Pennsylvania Academy of Sciences; 2016. pp. 181–199.
Joshi N, Fass J (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. Accessed 04 Nov 2018
Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host tolerance. Zool (Jena) 2016;119:281–289. doi: 10.1016/j.zool.2016.05.011. PubMed DOI
Langwig KE, Hoyt JR, Parise KL, et al. Resistance in persisting bat populations after white-nose syndrome invasion. Phil Trans R Soc B. 2017;372:20160044. doi: 10.1098/rstb.2016.0044. PubMed DOI PMC
Leopardi S, Blake D, Puechmaille SJ. White-nose syndrome fungus introduced from Europe to North America. Curr Biol. 2015;25:R217–R219. doi: 10.1016/j.cub.2015.01.047. PubMed DOI
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Lilley TM, Johnson JS, Ruokolainen L, et al. White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Front Zool. 2016;13:12. doi: 10.1186/s12983-016-0143-3. PubMed DOI PMC
Lilley TM, Prokkola JM, Johnson JS, et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc R Soc B. 2017;284:20162232. doi: 10.1098/rspb.2016.2232. PubMed DOI PMC
Lilley T, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol. 2018 doi: 10.1111/1365-2435.13183. DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Martinkova N, Backor P, Bartonicka T, et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS One. 2010;5:e13853. doi: 10.1371/journal.pone.0013853. PubMed DOI PMC
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–941. doi: 10.1126/science.1214935. PubMed DOI PMC
Meierhofer MB, Johnson JS, Field KA, et al. Bats recovering from white-nose syndrome elevate metabolic rate during wing healing in spring. J Wildl Dis. 2018;54:480–490. doi: 10.7589/2017-08-195. PubMed DOI
Meteyer CU, Buckles EL, Blehert DS, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest. 2009;21:411–414. doi: 10.1177/104063870902100401. PubMed DOI
Meteyer CU, Barber D, Mandl JN. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3:583–588. doi: 10.4161/viru.22330. PubMed DOI PMC
Micalizzi EW, Mack JN, White GP, et al. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS One. 2017;12:e0179770. doi: 10.1371/journal.pone.0179770. PubMed DOI PMC
Miller MR, White A, Boots M. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution. 2006;60:945–956. doi: 10.1111/j.0014-3820.2006.tb01173.x. PubMed DOI
Moore MS, Field KA, Behr MJ, et al. Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. J Comp Physiol B. 2018;188:163–176. doi: 10.1007/s00360-017-1109-2. PubMed DOI
Pikula J, Bandouchova H, Novotny L, et al. Histopathology confirms white-nose syndrome in bats in Europe. J Wildl Dis. 2012;48:207–211. doi: 10.7589/0090-3558-48.1.207. PubMed DOI
Pikula J, Amelon SK, Bandouchova H, et al. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS One. 2017;12:e0180435. doi: 10.1371/journal.pone.0180435. PubMed DOI PMC
Puechmaille SJ, Wibbelt G, Korn V, et al. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS One. 2011;6:e19167. doi: 10.1371/journal.pone.0019167. PubMed DOI PMC
Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–814. doi: 10.1126/science.1148526. PubMed DOI
Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci. 2009;364:37–49. doi: 10.1098/rstb.2008.0184. PubMed DOI PMC
Reeder DM, Frank CL, Turner GG, et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One. 2012 doi: 10.1371/journal.pone.0038920. PubMed DOI PMC
Reimand J, Arak T, Adler P, et al. g:profiler-a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Res. 2016;44:W83–W89. doi: 10.1093/nar/gkw199. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Rocke TE, Kingstad-Bakke B, Wüthrich M, et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus) Sci Rep. 2019;9:6788. doi: 10.1038/s41598-019-43210-w. PubMed DOI PMC
Roy BA, Kirchner JW. Evolutionary dynamics of pathogen resistance and tolerance. Evolution. 2000;54:51–63. doi: 10.1111/j.0014-3820.2000.tb00007.x. PubMed DOI
Ruedi M, Stadelmann B, Gager Y, et al. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera) Mol Phylogenetics Evol. 2013;69:437–449. doi: 10.1016/j.ympev.2013.08.011. PubMed DOI
Scholthof K-BG. The disease triangle: pathogens, the environment and society. Nat Rev Microbiol. 2007;5:152–156. doi: 10.1038/nrmicro1596. PubMed DOI
Soares MP, Teixeira L, Moita LF. Disease tolerance and immunity in host protection against infection. Nat Rev Immunol. 2017;17:83–96. doi: 10.1038/nri.2016.136. PubMed DOI
Song X, Dai D, He X, et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity. 2015;43:488–501. doi: 10.1016/j.immuni.2015.06.024. PubMed DOI
Su S, Law CW, Ah-Cann C, et al. Glimma: interactive graphics for gene expression analysis. Bioinformatics. 2017;33:2050–2052. doi: 10.1093/bioinformatics/btx094. PubMed DOI PMC
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Tompkins DM, Carver S, Jones ME, et al. Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol. 2015;31:149–159. doi: 10.1016/j.pt.2015.01.007. PubMed DOI
Turner GG, Meteyer CU, Barton H, et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J Wildl Dis. 2014;50:566–573. doi: 10.7589/2014-03-058. PubMed DOI
Van der Meij T, Van Strien AJ, Haysom KA, et al. Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm Biol. 2015;80:170–177. doi: 10.1016/j.mambio.2014.09.004. DOI
Varet H, Brillet-Guéguen L, Coppée J-Y, Dillies M-A. SARTools: a DESeq2− and EdgeR−based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One. 2016 doi: 10.1371/journal.pone.0157022. PubMed DOI PMC
Verant ML, Meteyer CU, Speakman JR, et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 2014;14:10. doi: 10.1186/s12899-014-0010-4. PubMed DOI PMC
Warnecke L, Turner JM, Bollinger TK, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc Natl Acad Sci USA. 2012;109:6999–7003. doi: 10.1073/pnas.1200374109. PubMed DOI PMC
Warnecke L, Turner JM, Bollinger TK, et al. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol Lett. 2013;9:20130177. doi: 10.1098/rsbl.2013.0177. PubMed DOI PMC
Wibbelt G, Kurth A, Hellmann D, et al. White-nose syndrome fungus (Geomyces destructans) in Bats, Europe. Emerg Infect Dis. 2010;16:1237–1243. doi: 10.3201/eid1608.100002. PubMed DOI PMC
Yates A, Akanni W, Amode MR, et al. Ensembl 2016. Nucl Acids Res. 2015 doi: 10.1093/nar/gkv1157. PubMed DOI PMC
Zukal J, Bandouchova H, Bartonicka T, et al. White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS One. 2014;9:e97224. doi: 10.1371/journal.pone.0097224. PubMed DOI PMC
Zukal J, Bandouchova H, Brichta J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep. 2016;6:19829. doi: 10.1038/srep19829. PubMed DOI PMC
Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen