Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37085747
PubMed Central
PMC10120247
DOI
10.1186/s12865-023-00542-7
PII: 10.1186/s12865-023-00542-7
Knihovny.cz E-zdroje
- Klíčová slova
- Antiviral state, Chiroptera, EBLV-1, Heat shock proteins (HSPs), Hibernation, In vitro infection model, Innate immunity, Lyssaviruses, Myotis myotis, Transcriptome,
- MeSH
- Chiroptera * fyziologie MeSH
- hibernace * MeSH
- Lyssavirus * MeSH
- transkriptom MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Department of Botany and Zoology Masaryk University Kotlářská 2 61137 Brno Czechia
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60300 Brno Czechia
Zobrazit více v PubMed
Bouma HR, Carey HV, Kroese FG. Hibernation: the immune system at rest? J Leukoc Biol. 2010;88(4):619–624. doi: 10.1189/jlb.0310174. PubMed DOI
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, et al. Hibernation temperature-dependent pseudogymnoascus destructans infection intensity in palearctic bats. Virulence. 2018;9:1734–1750. doi: 10.1080/21505594.2018.1548685. PubMed DOI PMC
Davis WH. Hibernation: ecology and physiological ecology. Biol Bats. 1970;1:265–300. doi: 10.1016/B978-0-12-758001-2.50013-7. DOI
Lyman CP. Thermoregulation and metabolism in bats. Biol Bats. 1970;1:301–330. doi: 10.1016/B978-0-12-758001-2.50014-9. DOI
Currie SE, Stawski C, Geiser F. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at sub-zero temperatures. J Exp Biol. 2018;221:jeb170894. PubMed
Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC
Field KA, Sewall BJ, Prokkola JM, Turner GG, Gagnon MF, Lilley TM, et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol. 2018;27:3727–3743. doi: 10.1111/mec.14827. PubMed DOI
Fritze M, Costantini D, Fickel J, Wehner D, Czirják GÁ, Voigt CC. Immune response of hibernating European bats to a fungal challenge. Biol Open. 2019;8:bio046078. doi: 10.1242/bio.046078. PubMed DOI PMC
Gerow CM, Rapin N, Voordouw MJ, Elliot M, Misra V, Subudhi S. Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (Ef HV) in big brown bats. Transbound Emerg Dis. 2019;66:1054–1062. doi: 10.1111/tbed.13102. PubMed DOI
Kurtz CC, Carey HV. Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol. 2007;31:415–428. doi: 10.1016/j.dci.2006.07.003. PubMed DOI
Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y, Maschek JA, et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell. 2019;177:399–413.e12. doi: 10.1016/j.cell.2019.01.050. PubMed DOI PMC
Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, et al. Interferon regulatory factors IRF1 and IRF7 directly regulate gene expression in bats in response to viral infection. Cell Rep. 2020;33:108345. doi: 10.1016/j.celrep.2020.108345. PubMed DOI PMC
Logan SM, Storey KB. Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator. Cell Signal. 2021;82:109975. doi: 10.1016/j.cellsig.2021.109975. PubMed DOI
Kurtz CC, Otis JP, Regan MD, Carey HV. How the gut and liver hibernate. Compart Biochem Physiol Part A Mol Integr Physiol. 2021;253:110875. doi: 10.1016/j.cbpa.2020.110875. PubMed DOI PMC
Banerjee A, Rapin N, Bollinger T, Misra V. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep. 2017;7:2232. doi: 10.1038/s41598-017-01513-w. PubMed DOI PMC
Clayton E, Munir M. Fundamental Characteristics of Bat Interferon Systems. Front Cell Infect Microbiol. 2020;10:527921. doi: 10.3389/fcimb.2020.527921. PubMed DOI PMC
Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN- PubMed DOI PMC
Kuzmin IV, Schwarz TM, Ilinykh PA, Jordan I, Ksiazek TG, Sachidanandam R, et al. Innate immune responses of bat and human cells to filoviruses: commonalities and distinctions. J Virol. 2017;91:e02471. doi: 10.1128/JVI.02471-16. PubMed DOI PMC
Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe. 2018;23:297–301. doi: 10.1016/j.chom.2018.01.006. PubMed DOI PMC
Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol. 2019;4:789–799. doi: 10.1038/s41564-019-0371-3. PubMed DOI PMC
Serra-Cobo J, Amengual B, Abellán C, Bourhy H. European bat lyssavirus infection in Spanish bat populations. Emerg Infect Dis. 2002;8:413. doi: 10.3201/eid0804.010263. PubMed DOI PMC
Amengual B, Bourhy H, López-Roig M, Serra-Cobo J. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS ONE. 2007;2:e566. doi: 10.1371/journal.pone.0000566. PubMed DOI PMC
Seidlova V, Zukal J, Brichta J, Anisimov N, Apoznański G, Bandouchova H, et al. Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats. BMC Vet Res. 2020;16:482. doi: 10.1186/s12917-020-02702-y. PubMed DOI PMC
Turmelle A, Jackson F, Green D, McCracken G, Rupprecht C. Host immunity to repeated rabies virus infection in big brown bats. J Gen Virol. 2010;91:2360. doi: 10.1099/vir.0.020073-0. PubMed DOI PMC
Davis AD, Rudd RJ, Bowen RA. Effects of aerosolized rabies virus exposure on bats and mice. J Infect Dis. 2007;195:1144–1150. doi: 10.1086/512616. PubMed DOI
Troupin C, Picard-Meyer E, Dellicour S, Casademont I, Kergoat L, Lepelletier A, et al. Host genetic variation does not determine spatio-temporal patterns of European bat 1 lyssavirus. Genome Biol Evol. 2017;9:3202–3213. doi: 10.1093/gbe/evx236. PubMed DOI PMC
Tjørnehøj K, Fooks A, Agerholm J, Rønsholt L. Natural and experimental infection of sheep with European bat lyssavirus type-1 of Danish bat origin. J Comp Pathol. 2006;134:190–201. doi: 10.1016/j.jcpa.2005.10.005. PubMed DOI
Dacheux L, Larrous F, Mailles A, Boisseleau D, Delmas O, Biron C, et al. European bat lyssavirus transmission among cats. Eur Emerg Infect Dis. 2009;15:280. doi: 10.3201/eid1502.080637. PubMed DOI PMC
Müller T, Cox J, Peter W, Schäfer R, Johnson N, McElhinney L, et al. Spill-over of European bat lyssavirus type 1 into a stone marten (Martes foina) in Germany. J Vet Med Ser B. 2004;51:49–54. doi: 10.1111/j.1439-0450.2003.00725.x. PubMed DOI
Regnault B, Evrard B, Plu I, Dacheux L, Troadec E, Cozette P, et al. First case of lethal encephalitis in Western Europe due to European bat lyssavirus type 1. Clin Infect Dis. 2022;74:461–466. doi: 10.1093/cid/ciab443. PubMed DOI
Hicks D, Nunez A, Healy D, Brookes S, Johnson N, Fooks A. Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol. 2009;140:113–126. doi: 10.1016/j.jcpa.2008.09.001. PubMed DOI
Hicks D, Nunez A, Banyard A, Williams A, Ortiz-Pelaez A, Fooks A, et al. Differential chemokine responses in the murine brain following lyssavirus infection. J Comp Pathol. 2013;149:446–462. doi: 10.1016/j.jcpa.2013.04.001. PubMed DOI
Kuzmin IV, Botvinkin AD, Shaimardanov RT. Experimental lyssavirus infection in chiropters. Vopr Virusol. 1994;39(1):17–21. PubMed
Parize P, Travecedo Robledo IC, Cervantes-Gonzalez M, Kergoat L, Larrous F, Serra-Cobo J, et al. Circumstances of Human-Bat interactions and risk of lyssavirus transmission in metropolitan France. Zoonoses Public Health. 2020;67:774–784. doi: 10.1111/zph.12747. PubMed DOI
Robardet E, Borel C, Moinet M, Jouan D, Wasniewski M, Barrat J, et al. Longitudinal survey of two serotine bat (Eptesicus serotinus) maternity colonies exposed to EBLV-1 (European Bat Lyssavirus type 1): Assessment of survival and serological status variations using capture-recapture models. PLoS Negl Trop Dis. 2017;11:e0006048. doi: 10.1371/journal.pntd.0006048. PubMed DOI PMC
Colombi D, Serra-Cobo J, Métras R, Apolloni A, Poletto C, López-Roig M, et al. Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep. 2019;9:1–11. doi: 10.1038/s41598-018-36485-y. PubMed DOI PMC
Freuling C, Vos A, Johnson N, Kaipf I, Denzinger A, Neubert L, et al. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a. J Gen Virol. 2009;90:2493–2502. doi: 10.1099/vir.0.011510-0. PubMed DOI
Eggerbauer E, Pfaff F, Finke S, Höper D, Beer M, Mettenleiter TC, et al. Comparative analysis of European bat lyssavirus 1 pathogenicity in the mouse model. PLoS Negl Trop Dis. 2017;11:e0005668. doi: 10.1371/journal.pntd.0005668. PubMed DOI PMC
Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NAS, Dzal YA, et al. Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence. 2020;11:781–794. doi: 10.1080/21505594.2020.1768018. PubMed DOI PMC
He X, Korytář T, Zhu Y, Pikula J, Bandouchova H, Zukal J, et al. Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS ONE. 2014;9:e109795. doi: 10.1371/journal.pone.0109795. PubMed DOI PMC
Šimić I, Lojkić I, Krešić N, Cliquet F, Picard-Meyer E, Wasniewski M, et al. Molecular and serological survey of lyssaviruses in Croatian bat populations. BMC Vet Res. 2018;14:274. doi: 10.1186/s12917-018-1592-z. PubMed DOI PMC
Van Brussel K, Holmes EC. Zoonotic disease and virome diversity in bats. Curr Opin Virol. 2022;52:192–202. doi: 10.1016/j.coviro.2021.12.008. PubMed DOI PMC
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: Important Reservoir Hosts of Emerging Viruses. Clin Microbiol Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC
Fuoco NL, Fernandes ER, dos Ramos Silva S, Luiz FG, Ribeiro OG, Katz ISS. Street rabies virus strains associated with insectivorous bats are less pathogenic than strains isolated from other reservoirs. Antivir Res. 2018;160:94–100. doi: 10.1016/j.antiviral.2018.10.023. PubMed DOI
Franka R, Johnson N, Müller T, Vos A, Neubert L, Freuling C, et al. Susceptibility of North American big brown bats (Eptesicus fuscus) to infection with European bat lyssavirus type 1. J Gen Virol. 2008;89:1998–2010. doi: 10.1099/vir.0.83688-0. PubMed DOI
Leopardi S, Priori P, Zecchin B, Poglayen G, Trevisiol K, Lelli D, et al. Active and passive surveillance for bat lyssaviruses in Italy revealed serological evidence for their circulation in three bat species. Epidemiol Infect 2019;147. PubMed PMC
Harazim M, Piálek L, Pikula J, Seidlovái V, Zukal J, Bachorec E, et al. Associating physiological functions with genomic variability in hibernating bats. Evol Ecol. 2021;35:291–308. doi: 10.1007/s10682-020-10096-4. DOI
Chionh YT, Cui J, Koh J, Mendenhall IH, Ng JH, Low D, et al. High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones. 2019;24:835–849. doi: 10.1007/s12192-019-01013-y. PubMed DOI PMC
Faherty SL, Villanueva-Cañas JL, Blanco MB, Albà MM, Yoder AD. Transcriptomics in the wild: Hibernation physiology in free-ranging dwarf lemurs. Mol Ecol. 2018;27:709–722. doi: 10.1111/mec.14483. PubMed DOI
Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74. doi: 10.1146/annurev.biochem.76.050106.093909. PubMed DOI
Lei M, Dong D, Mu S, Pan YH, Zhang S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE. 2014;9:e107746. doi: 10.1371/journal.pone.0107746. PubMed DOI PMC
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF- PubMed DOI PMC
Schuster N, Krieglstein K. Mechanisms of TGF- PubMed DOI
Wang ZW, Sarmento L, Wang Y, Li Xq, Dhingra V, Tseggai T, et al. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol. 2005;79:12554–12565. doi: 10.1128/JVI.79.19.12554-12565.2005. PubMed DOI PMC
Yang BH, Wang K, Wan S, Liang Y, Yuan X, Dong Y, et al. TCF1 and LEF1 control Treg competitive survival and Tfr development to prevent autoimmune diseases. Cell Rep. 2019;27:3629–3645. doi: 10.1016/j.celrep.2019.05.061. PubMed DOI PMC
Martínez Gómez JM, Periasamy P, Dutertre CA, Irving AT, Ng JHJ, Crameri G, et al. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep. 2016;6:37796. doi: 10.1038/srep37796. PubMed DOI PMC
Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis. 1997;4:201–214. doi: 10.1006/nbdi.1997.0156. PubMed DOI
Peirce MJ, Brook M, Morrice N, Snelgrove R, Begum S, Lanfrancotti A, et al. Themis2/ICB1 is a signaling scaffold that selectively regulates macrophage Toll-like receptor signaling and cytokine production. PLoS ONE. 2010;5:e11465. doi: 10.1371/journal.pone.0011465. PubMed DOI PMC
Guito JC, Prescott JB, Arnold CE, Amman BR, Schuh AJ, Spengler JR, et al. Asymptomatic infection of Marburg virus reservoir bats is explained by a strategy of immunoprotective disease tolerance. Curr Biol. 2021;31:257–270. doi: 10.1016/j.cub.2020.10.015. PubMed DOI
Begeman L, Suu-Ire R, Banyard AC, Drosten C, Eggerbauer E, Freuling CM, et al. Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Negl Trop Dis. 2020;14:e0008898. doi: 10.1371/journal.pntd.0008898. PubMed DOI PMC
Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;339:456–460. doi: 10.1126/science.1230835. PubMed DOI PMC
Schad J, Voigt CC. Adaptive evolution of virus-sensing toll-like receptor 8 in bats. Immunogenetics. 2016;68:783–795. doi: 10.1007/s00251-016-0940-z. PubMed DOI PMC
Harazim M, Horáček I, Jakešová L, Luermann K, Moravec JC, Morgan S, et al. Natural selection in bats with historical exposure to white-nose syndrome. BMC Zool. 2018;3:8. doi: 10.1186/s40850-018-0035-4. DOI
Delmas O, Holmes EC, Talbi C, Larrous F, Dacheux L, Bouchier C, et al. Genomic diversity and evolution of the lyssaviruses. PLoS ONE. 2008;3:e2057. doi: 10.1371/journal.pone.0002057. PubMed DOI PMC
Mareuil F, Doppelt-Azeroual O, Ménager H. A public Galaxy platform at Pasteur used as an execution engine for web services. F1000Research. 2017;6.
Dacheux L, Dommergues L, Chouanibou Y, Doméon L, Schuler C, Bonas S, et al. Co-circulation and characterization of novel African arboviruses (genus Ephemerovirus) in cattle, Mayotte island, Indian Ocean, 2017. Transbound Emerg Dis. 2019;66:2601–2604. doi: 10.1111/tbed.13323. PubMed DOI PMC
Cokelaer T, Desvillechabrol D, Legendre R, Cardon M. ‘Sequana’: a set of Snakemake NGS pipelines. J Open Source Softw. 2017;2:352. doi: 10.21105/joss.00352. DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinform. 2017;18:142. doi: 10.1186/s12859-017-1559-2. PubMed DOI PMC
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:1–12. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45–e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review