The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AR062651
NIAMS NIH HHS - United States
R01 AR066124
NIAMS NIH HHS - United States
R01 DE019567
NIDCR NIH HHS - United States
PubMed
30232230
PubMed Central
PMC7529349
DOI
10.1126/scitranslmed.aat9356
PII: 10/459/eaat9356
Knihovny.cz E-zdroje
- MeSH
- HEK293 buňky MeSH
- homozygot MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- missense mutace genetika MeSH
- mTORC1 metabolismus MeSH
- mTORC2 metabolismus MeSH
- mutantní proteiny chemie metabolismus MeSH
- osteogeneze * MeSH
- parathormon metabolismus MeSH
- protein podobný parathormonu metabolismus MeSH
- proteinkinasy chemie nedostatek genetika metabolismus MeSH
- proteolýza MeSH
- růstová ploténka metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce * MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- typy dědičnosti genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DEPTOR protein, human MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- mTORC1 MeSH
- mTORC2 MeSH
- mutantní proteiny MeSH
- parathormon MeSH
- protein podobný parathormonu MeSH
- proteinkinasy MeSH
- SIK3 protein, human MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
Studies have suggested a role for the mammalian (or mechanistic) target of rapamycin (mTOR) in skeletal development and homeostasis, yet there is no evidence connecting mTOR with the key signaling pathways that regulate skeletogenesis. We identified a parathyroid hormone (PTH)/PTH-related peptide (PTHrP)-salt-inducible kinase 3 (SIK3)-mTOR signaling cascade essential for skeletogenesis. While investigating a new skeletal dysplasia caused by a homozygous mutation in the catalytic domain of SIK3, we observed decreased activity of mTOR complex 1 (mTORC1) and mTORC2 due to accumulation of DEPTOR, a negative regulator of both mTOR complexes. This SIK3 syndrome shared skeletal features with Jansen metaphyseal chondrodysplasia (JMC), a disorder caused by constitutive activation of the PTH/PTHrP receptor. JMC-derived chondrocytes showed reduced SIK3 activity, elevated DEPTOR, and decreased mTORC1 and mTORC2 activity, indicating a common mechanism of disease. The data demonstrate that SIK3 is an essential positive regulator of mTOR signaling that functions by triggering DEPTOR degradation in response to PTH/PTHrP signaling during skeletogenesis.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Human Genetics University of California Los Angeles Los Angeles CA 90095 USA
Department of Orthopaedic Surgery University of California Los Angeles Los Angeles CA 90095 USA
Department of Pediatrics University of California Los Angeles Los Angeles CA 90095 USA
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Orthopaedic Institute for Children University of California Los Angeles Los Angeles CA 90095 USA
Zobrazit více v PubMed
Kozhemyakina E, Lassar AB, Zelzer E, A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Development 142, 817–831 (2015). PubMed PMC
Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC, Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene, Genes Dev. 8, 277–289 (1994). PubMed
Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissenson RA, Kronenberg HM, Segre GV, Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development, Endocrinology 137, 5109–5118 (1996). PubMed
Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Jüppner H, Segre GV, Kronenberg HM, PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth, Science 273, 663–666 (1996). PubMed
Kozhemyakina E, Cohen T, Yao T-P, Lassar AB, Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway, Mol. Cell. Biol 29, 5751–5762 (2009). PubMed PMC
Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, Yamana K, Neff L, Atfi A, Coillard L, Sitara D, Maeda Y, Warming S, Jenkins NA, Copeland NG, Horne WC, Lanske B, Baron R, Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes, Dev. Cell 19, 533–546 (2010). PubMed PMC
Schipani E, Kruse K, Jüppner H, A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia, Science 268, 98–100 (1995). PubMed
Cohen MM, Some chondrodysplasias with short limbs: Molecular perspectives, Am. J. Med. Genet 112, 304–313 (2002). PubMed
Sarbassov DD, Ali SM, Sabatini DM, Growing roles for the mTOR pathway, Curr. Opin. Cell Biol 17, 596–603 (2005). PubMed
Guertin DA, Sabatini DM, Defining the role of mTOR in cancer, Cancer Cell 12, 9–22 (2007). PubMed
Chen J, Long F, mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis, Development 141, 2848–2854 (2014). PubMed PMC
Chen J, Holguin N, Shi Y, Silva MJ, Long F, mTORC2 signaling promotes skeletal growth and bone formation in mice, J. Bone Miner. Res 30, 369–378 (2015). PubMed PMC
Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, Wang T, Li S, Zhang H, Huang B, Lai P, Wang H, Liu A, Zeng C, Cai D, Jiang Y, Bai X, mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation, Nat Commun 7, 11151 (2016). PubMed PMC
Mihaylova MM, Shaw RJ, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nature Publishing Group 13, 1016–1023 (2011). PubMed PMC
Walkinshaw DR, Weist R, Kim G-W, You L, Xiao L, Nie J, Li CS, Zhao S, Xu M, Yang X-J, The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases, J. Biol. Chem 288, 9345–9362 (2013). PubMed PMC
Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates JR, Fischer WH, Thomas JB, Montminy M, A hormone-dependent module regulating energy balance, Cell 145, 596–606 (2011). PubMed PMC
Choi S, Lim D-S, Chung J, Taghert PH, Ed. Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila, PLoS Genet. 11, e1005263 (2015). PubMed PMC
Sakamaki J-I, Fu A, Reeks C, Baird S, Depatie C, Al Azzabi M, Bardeesy N, Gingras A-C, Yee S-P, Screaton RA, Role of the SIK2-p35-PJA2 complex in pancreatic β-cell functional compensation, Nat. Cell Biol 16, 234–244 (2014). PubMed PMC
Sasagawa S, Takemori H, Uebi T, Ikegami D, Hiramatsu K, Ikegawa S, Yoshikawa H, Tsumaki N, SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice, Development 139, 1153–1163 (2012). PubMed
Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, O’Meara MJ, Govea N, Beqo B, Nishimori S, Nagano K, Brooks DJ, Martins JS, Corbin B, Anselmo A, Sadreyev R, Wu JY, Sakamoto K, Foretz M, Xavier RJ, Baron R, Bouxsein ML, Gardella TJ, Divieti-Pajevic P, Gray NS, Kronenberg HM, SIKs control osteocyte responses to parathyroid hormone, Nat Commun 7, 13176 (2016). PubMed PMC
Hansen J, Snow C, Tuttle E, Ghoneim DH, Yang C-S, Spencer A, Gunter SA, Smyser CD, Gurnett CA, Shinawi M, Dobyns WB, Wheless J, Halterman MW, Jansen LA, Paschal BM, Paciorkowski AR, De novo mutations in SIK1 cause a spectrum of developmental epilepsies, Am. J. Hum. Genet 96, 682–690 (2015). PubMed PMC
Inoki K, Zhu T, Guan K-L, TSC2 mediates cellular energy response to control cell growth and survival, Cell 115, 577–590 (2003). PubMed
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ, AMPK phosphorylation of raptor mediates a metabolic checkpoint, Molecular Cell 30, 214–226 (2008). PubMed PMC
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM, DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival, Cell 137, 873–886 (2009). PubMed PMC
Gao D, Inuzuka H, Tan M-KM, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S, Lyssiotis CA, Gygi SP, Toker A, Cantley LC, Asara JM, Harper JW, Wei W, mTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR, Molecular Cell 44, 290–303 (2011). PubMed PMC
Zhao Y, Xiong X, Sun Y, DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy, Molecular Cell 44, 304–316 (2011). PubMed PMC
Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M, mTOR Generates an Auto-Amplification Loop by Triggering the βTrCP- and CK1α-Dependent Degradation of DEPTOR, Molecular Cell 44, 317–324 (2011). PubMed PMC
González-Terán B, López JA, Rodríguez E, Leiva L, Martínez-Martínez S, Bernal JA, Jiménez-Borreguero LJ, Redondo JM, Vazquez J, Sabio G, p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation, Nat Commun 7, 10477 (2016). PubMed PMC
Berggreen C, Henriksson E, Jones HA, Morrice N, Goransson O, cAMP-elevation mediated by β-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes, Cell. Signal 24, 1863–1871 (2012). PubMed
Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, Alessi DR, LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, EMBO J. 23, 833–843 (2004). PubMed PMC
Al Kaissi A, Ghachem MB, Nessib N, Chehida FB, Hammou A, Kozlowski K, Distinctive new form of spondyloepimetaphyseal dysplasia with severe metaphyseal changes similar to Jansen metaphyseal chondrodysplasia, Australas Radiol 49, 57–62 (2005). PubMed
Laplante M, Sabatini DM, mTOR signaling in growth control and disease, Cell 149, 274–293 (2012). PubMed PMC
Zoncu R, Efeyan A, Sabatini DM, mTOR: from growth signal integration to cancer, diabetes and ageing, Nat. Rev. Mol. Cell Biol 12, 21–35 (2011). PubMed PMC
Ikegami D, Akiyama H, Suzuki A, Nakamura T, Nakano T, Yoshikawa H, Tsumaki N, Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways, Development 138, 1507–1519 (2011). PubMed
Kita K, Kimura T, Nakamura N, Yoshikawa H, Nakano T, PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation, Genes to Cells 13, 839–850 (2008). PubMed
Lee H, Graham JM, Rimoin DL, Lachman RS, Krejci P, Tompson SW, Nelson SF, Krakow D, Cohn DH, Exome sequencing identifies PDE4D mutations in acrodysostosis, Am. J. Hum. Genet 90, 746–751 (2012). PubMed PMC
Gassmann M, Grenacher B, Rohde B, Vogel J, Quantifying Western blots: Pitfalls of densitometry, Electrophoresis 30, 1845–1855 (2009). PubMed
Kelley LA, Sternberg MJE, Protein structure prediction on the Web: a case study using the Phyre server, Nat Protoc 4, 363–371 (2009). PubMed
Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH, CDD: conserved domains and protein three-dimensional structure, Nucleic Acids Research 41, D348–D352 (2012). PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem 25, 1605–1612 (2004). PubMed