Expanded gene and taxon sampling of diplomonads shows multiple switches to parasitic and free-living lifestyle
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39334206
PubMed Central
PMC11437800
DOI
10.1186/s12915-024-02013-w
PII: 10.1186/s12915-024-02013-w
Knihovny.cz E-zdroje
- Klíčová slova
- Diplomonads, Parasitic ancestry signals, Phylogenetics, Phylogenomics, Transcriptomics,
- MeSH
- biologická evoluce MeSH
- Diplomonadida * genetika MeSH
- fylogeneze * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diplomonads are anaerobic flagellates classified within Metamonada. They contain both host-associated commensals and parasites that reside in the intestinal tracts of animals, including humans (e.g., Giardia intestinalis), as well as free-living representatives that inhabit freshwater and marine anoxic sediments (e.g., Hexamita inflata). The evolutionary trajectories within this group are particularly unusual as the free-living taxa appear to be nested within a clade of host-associated species, suggesting a reversal from host-dependence to a secondarily free-living lifestyle. This is thought to be an exceedingly rare event as parasites often lose genes for metabolic pathways that are essential to a free-living life strategy, as they become increasingly reliant on their host for nutrients and metabolites. To revert to a free-living lifestyle would require the reconstruction of numerous metabolic pathways. All previous studies of diplomonad evolution suffered from either low taxon sampling, low gene sampling, or both, especially among free-living diplomonads, which has weakened the phylogenetic resolution and hindered evolutionary insights into this fascinating transition. RESULTS: We sequenced transcriptomes from 1 host-associated and 13 free-living diplomonad isolates; expanding the genome scale data sampling for diplomonads by roughly threefold. Phylogenomic analyses clearly show that free-living diplomonads form several branches nested within endobiotic species. Moreover, the phylogenetic distribution of genes related to an endobiotic lifestyle suggest their acquisition at the root of diplomonads, while traces of these genes have been identified in free-living diplomonads as well. Based on these results, we propose an evolutionary scenario of ancestral and derived lifestyle transitions across diplomonads. CONCLUSIONS: Free-living taxa form several clades nested within endobiotic taxa in our phylogenomic analyses, implying multiple transitions between free-living and endobiotic lifestyles. The evolutionary history of numerous virulence factors corroborates the inference of an endobiotic ancestry of diplomonads, suggesting that there have been several reversals to a free-living lifestyle. Regaining host independence may have been facilitated by a subset of laterally transferred genes. We conclude that the extant diversity of diplomonads has evolved from a non-specialized endobiont, with some taxa becoming highly specialized parasites, others becoming free-living, and some becoming capable of both free-living and endobiotic lifestyles.
Department of Biological Sciences University of Arkansas Fayetteville AR 72701 USA
Department of Biological Sciences University of Rhode Island Kingston RI 02881 USA
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec 252 42 Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 128 00 Czech Republic
School of Science Mae Fah Luang University 333 Moo1Chiang Rai 57100 Thasud Muang Thailand
Zobrazit více v PubMed
Fard MRS, Jørgensen A, Sterud E, Bleiss W, Poynton SL. Ultrastructure and molecular diagnosis of PubMed DOI
Jørgensen A, Sterud E. The marine pathogenic genotype of Spironucleus barkhanus from farmed salmonids redescribed as Spironucleus salmonicida n. sp. J Eukaryot Microbiol. 2006;53:531–41. PubMed DOI
Hooshyar H, Rostamkhani P, Arbabi M, Delavari M. PubMed PMC
Xu F, Jerlström-Hultqvist J, Einarsson E, Ástvaldsson Á, Svärd SG, Andersson JO. The genome of PubMed DOI PMC
Kolisko M, Cepicka I, Hampl V, Kulda J, Flegr J. The phylogenetic position of enteromonads: a challenge for the present models of diplomonad evolution. Int J Syst Evol Microbiol. 2005;55:1729–33. PubMed DOI
Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, et al. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol. 2008;8:205. PubMed DOI PMC
Cavalier-Smith T, Chao EE. Molecular phylogeny of the free-living archezoan PubMed DOI
Mazancová E, Zadrobílková E, Yubuki N, Čepička I. Phylogenetic and morphological diversity of free-living diplomonads. Eur J Protistol. 2023;91:126024. PubMed
Keeling PJ, Doolittle WF. A non-canonical genetic code in an early diverging eukaryotic lineage. EMBO J. 1996;15:2285–90. PubMed DOI PMC
Silberman JD, Simpson AGB, Kulda J, Cepicka I, Hampl V, Johnson PJ, et al. Retortamonad flagellates are closely related to diplomonads–implications for the history of mitochondrial function in eukaryote evolution. Mol Biol Evol. 2002;19:777–86. PubMed DOI
Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svärd SG. Hydrogenosomes in the diplomonad PubMed DOI PMC
Jedelský PL, Doležal P, Rada P, Pyrih J, Šmíd O, Hrdý I, et al. The Minimal Proteome in the reduced mitochondrion of the parasitic protist PubMed DOI PMC
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, et al. Mitochondrial remnant organelles of PubMed DOI
Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD, Ricklefs SM, et al. Genome sequencing of PubMed DOI PMC
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, Eckmann L, et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genomics. 2020;6:e000402. PubMed DOI PMC
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, et al. Genomic minimalism in the early diverging intestinal parasite PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605. PubMed DOI
Andersson JO, Sjögren AM, Horner DS, Murphy CA, Dyal PL, Svärd SG, et al. A genomic survey of the fish parasite PubMed DOI PMC
Roxström-Lindquist K, Jerlström-Hultqvist J, Jørgensen A, Troell K, Svärd SG, Andersson JO. Large genomic differences between the morphologically indistinguishable diplomonads PubMed DOI PMC
Franzén O, Jerlström-Hultqvist J, Einarsson E, Ankarklev J, Ferella M, Andersson B, et al. Transcriptome profiling of PubMed DOI PMC
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974. PubMed DOI PMC
Janouškovec J, Horák A, Barott KL, Rohwer FL, Keeling PJ. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 2013;7:444–7. PubMed DOI PMC
Weatherby K, Carter D. PubMed DOI
Nash TE. Surface antigenic variation in PubMed DOI
Dubourg A, Xia D, Winpenny JP, Al Naimi S, Bouzid M, Sexton DW, et al. PubMed DOI PMC
Keeling PJ. Reduction and compaction in the genome of the apicomplexan parasite PubMed DOI
Wolf YI, Rogozin IB, Koonin EV. Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res. 2004;14:29–36. PubMed DOI PMC
Keeling PJ, Fast NM. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol. 2002;56:93–116. PubMed DOI
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142:S6-15. PubMed DOI PMC
Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AGB, Roger AJ, Svärd SG, et al. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol. 2016;14:62. PubMed DOI PMC
Heinz E, Williams TA, Nakjang S, Noël CJ, Swan DC, Goldberg AV, et al. The genome of the obligate intracellular parasite PubMed DOI PMC
Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 2011;19:341. PubMed DOI PMC
Céza V, Kotyk M, Kubánková A, Yubuki N, Šťáhlavský F, Silberman JD, et al. Free-living Trichomonads are unexpectedly diverse. Protist. 2022;173:125883. PubMed DOI
Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, Yabuki A, et al. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol. 2010;12:2700–10. PubMed DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Organelles that illuminate the origins of PubMed DOI PMC
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31:5605-5612.e5. PubMed DOI
Hirt RP, Harriman N, Kajava AV, Embley TM. A novel potential surface protein in PubMed DOI
Hagen KD, Hirakawa MP, House SA, Schwartz CL, Pham JK, Cipriano MJ, et al. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis. PLoS Negl Trop Dis. 2011;5:e1442. PubMed DOI PMC
Nosala C, Dawson SC. The critical role of the cytoskeleton in the pathogenesis of PubMed DOI PMC
Nosala C, Hagen KD, Chase TM, Jones K, Loudermilk R, Nguyen K, et al. The hyperstability and composition of
Hagen KD, Nosala C, Hilton N, Mueller A, Holthaus D, Laue M, Klotz C, Aebischer A, Dawson SC. The domed architecture of
Biagini GA, Suller MTE, Finlay BJ, Lloyd D. Oxygen uptake and antioxidant responses of the free-living diplomonad PubMed DOI
Bishop A. The morphology and division of Hexamita gigas n.sp. (Flagellata). Parasitology. 1933;25:163–70. DOI
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun. 2021;12:6003. PubMed DOI PMC
Eyden BP, Vickerman K. Ultrastructure and vacuolar movements in the free-living diplomonad DOI
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 2021;19:77. PubMed DOI PMC
Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. Behind the smile: cell biology and disease mechanisms of PubMed DOI
Adam RD, Nigam A, Seshadri V, Martens CA, Farneth GA, Morrison HG, et al. The PubMed DOI PMC
Rodríguez-Walker M, Molina CR, Luján LA, Saura A, Jerlström-Hultqvist J, Svärd SG, et al. Comprehensive characterization of Cysteine-rich protein-coding genes of PubMed DOI
Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins. Int J Parasitol. 2003;33:1291–302. PubMed DOI
Kordiš D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol. 2009;9:266. PubMed DOI PMC
Krasity BC, Troll JV, Weiss JP, McFall-Ngai MJ. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem Soc Trans. 2011;39:1039–44. PubMed DOI PMC
Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200:488–99. PubMed DOI
Ortega-Pierres MG, Argüello-García R. PubMed DOI
Jiménez-González A, Andersson JO. Metabolic reconstruction elucidates the lifestyle of the last diplomonadida common ancestor. mSystems. 2020;5:e00774-20. PubMed DOI PMC
Lundin D, Torrents E, Poole AM, Sjöberg B-M. RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank. BMC Genomics. 2009;10:589. PubMed DOI PMC
Tachezy J, Sánchez LB, Müller M. Mitochondrial type Iron-Sulphur cluster assembly in the amitochondriate eukaryotes PubMed DOI
Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, et al. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen PubMed
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019;572:240–3. PubMed DOI
Rueckert S, Betts EL, Tsaousis AD. The symbiotic spectrum: where do the Gregarines fit? Trends Parasitol. 2019;35:687–94. PubMed DOI
Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 2016;167:444-456.e14. PubMed DOI PMC
Andrews S. FASTQC: a quality control tool for high throughput sequence data. 2010. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of Eukaryotic, Prokaryotic, and Viral genomes. Mol Biol Evol. 2021;38:4647–54. PubMed DOI PMC
Wiśniewska MM, Salomaki ED, Silberman JD, Terpis KX, Mazancová E, Táborský P, Jinatham V, Gentekaki E, Čepička I, Kolisko M. Expanded gene and taxon sampling of diplomonads shows multiple switches to parasitic and free-living lifestyle. Figshare. 2024. 10.6084/m9.figshare.26348908.
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19:e3001365. PubMed DOI PMC
Whelan S, Irisarri I, Burki F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics. 2018;34:3929–30. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. PubMed DOI PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: Phylogenetic Reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5. PubMed DOI
del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLOS Biol. 2018;16:e2005849. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. PubMed DOI
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10: 210. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. PubMed DOI PMC
Eddy SR. Accelerated Profile HMM Searches. PLOS Comput Biol. 2011;7:e1002195. PubMed DOI PMC
Wiśniewska MM, Salomaki ED, Silberman JD, Terpis KX, Mazancová E, Táborský P, Jinatham V, Gentekaki E, Čepička I and Kolisko M. Expanded gene and taxon sampling of diplomonads shows multiple switches to parasitic and free-living lifestyle. GenBank. 2024. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1066712/.