Olisthodiscus represents a new class of Ochrophyta
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33655496
DOI
10.1111/jpy.13155
Knihovny.cz E-resources
- Keywords
- Olisthodiscus, Ochrophyta, Raphidophyceae, SulT, morphology, phylogeny, pigments, plastid genome, rDNA, taxonomy,
- MeSH
- Phylogeny MeSH
- Genome, Plastid * MeSH
- Stramenopiles * genetics MeSH
- Plastids MeSH
- Plants MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.
Department of Biosciences University of Oslo P O Box 1066 Blindern 0316 Oslo Norway
Department of Plant Biology and Ecology University of the Basque Country 48940 Leioa Spain
Natural history Museum University of Oslo P O Box 1172 Blindern 0318 Oslo Norway
Norwegian Institute for Water Research Gaustadallèen 21 0349 Oslo Norway
See more in PubMed
Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W. et al. 2012. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59:429-93.
Aguilar-Barajas, E., Díaz-Pérez, C., Ramírez-Díaz, M. I., Riveros-Rosas, H. & Cervantes, C. 2011. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687-707.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-402.
Andersen, R. A. 2004. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91:1508-22.
Andersen, R. A. 2005. Algal Culturing Techniques, 1st ed. Academic Press, Amsterdam, 596 pp.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M. et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-77.
Bellaousov, S., Reuter, J. S., Seetin, M. G. & Mathews, D. H. 2013. RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 41:W471-W474.
Berger, S. A., Krompass, D. & Stamatakis, A. 2011. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60:291-302.
Boczar, B. A., Delaney, T. P. & Cattolico, R. A. 1989. Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc. Natl. Acad. Sci. USA 86:4996-9.
Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-20.
Bowers, H. A., Tomas, C., Tengs, T., Kempton, J. W., Lewitus, A. J. & Oldach, D. W. 2006. Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: sequence analyses and real-time PCR assays. J. Phycol. 42:1333-48.
Brown, J. W. & Sorhannus, U. A. 2010. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5:e12759.
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-3.
Carter, N. 1937. New or interesting algae from brackish water. Arch. Protistenk. 90:1-68.
Cavalier-Smith, T. & Scoble, J. M. 2013. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur. J. Protistol. 49:328-53.
Christensen, T. 1980. Algae: A taxonomic survey. Fasc. 1. AiO Tryk as, Odense, 216 pp.
Christensen, T. 1994. Algae: A taxonomic survey. Fasc. 2. AiO Tryk as, Odense, 256 pp.
Coleman, A. W. 2009. Is there a molecular key to the level of "biological species" in eukaryotes? Mol. Phylogenet. Evol. 50:197-203.
Connell, L. B. 2000. Nuclear ITS region of the alga Heterosigma akashiwo (Chromophyta: Raphidophyceae) is identical in isolates from Atlantic and Pacific basins. Mar. Biol. 136:953-60.
Connell, L. 2002. Rapid identification of marine algae (Raphidophyceae) using three-primer PCR amplification of nuclear internal transcribed spacer (ITS) regions from fresh and archived material. Phycologia 41:15-21.
Delaney, T. P. & Cattolico, R. A. 1989. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus. Curr. Genet. 15:221-9.
Delaney, T. P. & Cattolico, R. A. 1991. Sequence and secondary structure of chloroplast 16S rRNA from the chromophyte alga Olisthodiscus luteus, as inferred from the gene sequence. Nucleic Acids Res. 19:6328.
Derelle, R., López-García, P., Timpano, H. & Moreira, D. 2016. A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts). Mol. Biol. Evol. 33:2890-8.
Dorrell, R. G., Gile, G., McCallum, G., Méheust, R., Bapteste, E. P., Klinger, C. M., Brillet-Guéguen, L., Freeman, K. D., Richter, D. J. & Bowler, C. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717.
Eddy, S. R. 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7:e1002195.
Eliáš, M., Amaral, R., Fawley, K. P., Fawley, M. W., Němcová, Y., Neustupa, J., Přibyl, P., Santos, L. M. A. & Ševčíková, T. 2017. Eustigmatophyceae. In Archibald, J. M., Simpson, A. G. & Slamovits, C. H. [Eds.] Handbook of the Protists. Springer, Berlin, pp. 367-406.
Engesmo, A., Eikrem, W., Seoane, S., Smith, K., Edvardsen, B., Hofgaard, A. & Tomas, C. R. 2016. New insights into the morphology and phylogeny of Heterosigma akashiwo (Raphidophyceae), with the description of Heterosigma minor sp. nov. Phycologia 55:279-94.
Fukuyo, Y., Takano, H., Chihara, M. & Matsuoka, K. 1990. Red Tide Organisms in Japan: An Illustrated Taxonomic Guide. Uchida Rokakuho, Tokyo, pp. 1-430.
Gibbs, S. P., Chu, L. L. & Magnussen, C. 1980. Evidence that Olisthodiscus luteus is a member of the Chrysophyceae. Phycologia 19:173-7.
Greiner, S., Lehwark, P. & Bock, R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47:W59-64.
Hallegraeff, G. M. & Hara, Y. 2003. Taxonomy of harmful marine raphidophytes. In Hallegraeff, G. M., Anderson, D. M. & Cembella, A. D. [Eds.] Manual of Harmful Marine Microalgae. UNESCO Publishing, Paris, pp. 511-22.
Han, K. Y., Maciszewski, K., Graf, L., Yang, J. H., Andersen, R. A., Karnkowska, A. & Yoon, H. S. 2019. Dictyochophyceae plastid genomes reveal unusual variability in their organization. J. Phycol. 55:116-80.
Hara, Y., Inouye, I. & Chihara, M. 1985. Morphology and ultrastructure of Olisthodiscus luteus (Raphidophyceae) with special reference to the taxonomy. Bot. Mag. Tokyo 98:251-62.
Harada, K., Arizono, T., Sato, R., Trinh, M. D. L., Hashimoto, A., Kono, M., Tsujii, M., Uozumi, N., Takaichi, S. & Masuda, S. 2019. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis homolog of the cyanobacterial H+-extrusion protein, is essential for chloroplast pH regulation and optimization of non-photochemical quenching. Plant Cell Physiol. 60:2660-71.
Harmanci, A. O., Sharma, G. & Mathews, D. H. 2008. PARTS: probabilistic alignment for RNA joinT secondary structure prediction. Nucleic Acids Res. 36:2406-17.
Hohenberg, H., Mannweiler, K. & Müller, M. 1994. High-pressure freezing of cell suspensions in cellulose capillary tubes. J. Microsc. 175:34-43.
Honda, D. & Inouye, I. 2002. Ultrastructure and taxonomy of a marine photosynthetic stramenopile Phaeomonas parva gen. et sp. nov. (Pinguiophyceae) with emphasis on the flagellar apparatus architecture. Phycol. Res. 50:75-89.
Honda, D., Kawachi, M. & Inouye, I. 1995. Sulcochrysis biplastida gen. et. sp. nov.: cell structure and absolute configuration of the flagellar apparatus of an enigmatic chromophyte alga. Phycol. Res. 43:1-16.
Honda, D., Shono, T., Kimura, K., Fujita, S., Iseki, M., Makino, Y. & Murakami, A. 2007. Homologs of the sexually induced gene 1 (sig1) product constitute the stramenopile mastigonemes. Protist 158:77-88.
Horn, S., Ehlers, K., Fritzsch, G., Gil-Rodríguez, M. C., Wilhelm, C. & Schnetter, R. 2007. Synchroma grande spec. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes. Protist 158:277-93.
Hovde, B. T., Starkenburg, S. R., Hunsperger, H. M., Mercer, L. D., Deodato, C. R., Jha, R. K., Chertkov, O., Monnat, R. J. Jr & Cattolico, R. A. 2014. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genom. 15:604.
Hulburt, E. M. 1965. Flagellates from brackish waters in the vicinity of Woods Hole, Massachusetts. J. Phycol. 1:87-94.
Iida, K., Takishita, K., Ohshima, K. & Inagaki, Y. 2007. Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Mol. Phylogenet. Evol. 45:227-38.
Inouye, I., Hara, Y. & Chihara, M. 1992. Further observations on Olisthodiscus luteus (Raphidophyceae, Chromophyta): the flagellar apparatus ultrastructure. Jap. J. Phycol. 40:333-48.
Ishida, K., Cavalier-Smith, T. & Green, B. R. 2000. Endomembrane structure and the chloroplast protein targeting pathway in Heterosigma akashiwo (Raphidophyceae, Chromista). J. Phycol. 36:1135-44.
Jeffrey, S. W., Wright, S. W. & Zapata, M. 2011. Microalgal classes and their signature pigments. In Roy, S., Llewellyn, C., Egeland, E. S. & Johnsen, G. [Eds.] Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge University Press, Cambridge, UK, pp 3-77.
Johnson, L. K., Alexander, H. & Brown, C. T. 2019. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. GigaScience 8:giy158.
Kai, A., Yoshii, Y., Nakayama, T. & Inouye, I. 2008. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159:435-57.
Kalanon, M. & McFadden, G. I. 2008. The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179:95-112.
Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., Bateman, A., Finn, R. D. & Petrov, A. I. 2018. Rfam 13.0: shifting to a genome - centric resource for non-coding RNA families. Nucleic Acids Res. 46:D335-D342.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587-9.
Katoh, K. & Standley, D. M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-80.
Kawachi, M., Inouye, I., Honda, D., O'Kelly, C. J., Bailey, J. C., Bidigare, R. R. & Andersen, R. A. 2002. The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol. Res. 50:31-47.
Keeling, P. J., Burki, F., Wilcox, H. M. et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12:e1001889.
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845-58.
Kim, J., Park, B. S., Wang, P., Kim, J. H., Youn, S. H. & Han, M. 2015. Cyst morphology and germination in Heterosigma akashiwo (Raphidophyceae). Phycologia 54:435-9.
Kim, J. I., Shin, H., Škaloud, P., Jung, J., Yoon, H. S., Archibald, J. M. & Shin, W. 2019. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol. Biol. 19:20.
Kryvenda, A., Rybalka, N., Wolf, M. & Friedl, T. 2018. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 53:471-91.
Kück, P. & Longo, G. C. 2014. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11:81.
Langmead, B. & Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-9.
Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62:611-5.
Leadbeater, B. 1969. A fine structural study of Olisthodiscus luteus Carter. Br. Phycol. J. 4:3-17.
Leadbeater, B. & Green, J. C. 1993. Cell coverings of microalgae. In Berner, T. [Ed.] Ultrastructure of Microalgae. CRC Press, Boca Raton, Florida, pp. 71-98.
Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., López-Bautista, J. M., Zuccarello, G. C. & De Clerck, O. 2014. DNA-based species delimitation in algae. Eur. J. Phycol. 49:179-96.
Logares, R., Audic, S., Bass, D., Bittner, L., Boutte, C., Christen, R., Claverie, J. M. et al. 2014. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24:813-21.
Milne, I., Stephen, G., Bayer, M., Cock, P. J., Pritchard, L., Cardle, L., Shaw, P. D. & Marshall, D. 2013. Using tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14:193-202.
Mostaert, A. S., Karsten, U., Hara, Y. & Watanabe, M. M. 1998. Pigments and fatty acids of marine raphidophytes: a chemotaxonomic re-evaluation. Phycol. Res. 46:213-20.
Muñoz-Gómez, S. A., Mejía-Franco, F. G., Durnin, K., Colp, M., Grisdale, C. J., Archibald, J. M. & Slamovits, C. H. 2017. The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr. Biol. 27:1677-84.e4.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268-74.
Noguchi, F., Tanifuji, G., Brown, M. W., Fujikura, K. & Takishita, K. 2016. Complex evolution of two types of cardiolipin synthase in the eukaryotic lineage stramenopiles. Mol. Phylogenet. Evol. 101:133-41.
Obiol, A., Giner, C. R., Sánchez, P., Duarte, C. M., Acinas, S. G. & Massana, R. 2020. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20:718-31.
Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, S., Nozaki, H., Tanaka, K., Shin-I, T., Kohara, Y. & Kuroiwa, T. 2003. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res. 10:137.
Okumura, Y., Yamasaki, M. & Suzuki, T. 2001. Pigment profile and violaxanthin cycle of Heterosigma akashiwo (Raphidophyceae). J. Shellfish Res. 20:1263-8.
Přibyl, P., Eliáš, M., Cepák, V., Lukavský, J. & Kaštánek, P. 2012. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol. 48:231-42.
Rambaut, A. 2009. FigTree v1.4.2: Tree Figure Drawing Tool. Available: http://tree.bio.ed.ac.uk/software/figtree.
Reumann, S., Inoue, K. & Keegstra, K. 2005. Evolution of the general protein import pathway of plastids (review). Mol. Membr. Biol. 22:73-86.
Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-12.
Rodríguez, F., Chauton, M., Johnsen, G., Andresen, K., Olsen, L. M. & Zapata, M. 2006. Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomy. Mar. Biol. 148:963-71.
Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-4.
Sasaki, Y., Sekiguchi, K., Nagano, Y. & Matsuno, R. 1993. Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett. 316:93-8.
Schultz, J., Maisel, S., Gerlach, D., Müller, T. & Wolf, M. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361-4.
Seibel, P. N., Müller, T., Dandekar, T. & Wolf, M. 2008. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res. Notes 1:91.
Seoane, S., Zapata, M. & Orive, E. 2009. Growth rates and pigment patterns of haptophytes isolated from estuarine waters. J. Sea Res. 62:286-94.
Ševčíková, T., Horák, A., Klimeš, V., Zbránková, V., Demir-Hilton, E., Sudek, S., Jenkins, J. et al. 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5:10134.
Ševčíková, T., Yurchenko, T., Fawley, K. P., Amaral, R., Strnad, H., Santos, L. M. A., Fawley, M. W. & Eliáš, M. 2019. Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol. Evol. 11:362-79.
Sibbald, S. J. & Archibald, J. M. 2020. Genomic insights into plastid evolution. Genome Biol. Evol. 12:978-90.
Stoeck, T. & Epstein, S. 2003. Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl. Environ. Microbiol. 69:2657-63.
Tajima, N., Saitoh, K., Sato, S., Maruyama, F., Ichinomiya, M., Yoshikawa, S., Kurokawa, K., Ohta, H., Tabata, S., Kuwata, A. & Sato, N. 2016. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr. Genet. 62:887-96.
Takishita, K., Yamaguchi, H., Maruyama, T. & Inagaki, Y. 2009. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members. PLoS ONE 4:e4737.
Taylor, F. J. R. 1992. The taxonomy of harmful marine phytoplankton. Giorn. Bot. Ital. 126:209-19.
Tong, S. M. 1995. Developayella elegans nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. Eur. J. Protistol. 31:24-31.
Tyrrell, J. V. 1999. Molecular probes for the fish-killing raphidophytes and the phylogeny of the group. Master's thesis, The University of Auckland, Auckland, New Zealand.
Tyrrell, J. V., Bergquist, P. R., Bergquist, P. R. & Scholin, C. A. 2001. Detection and enumeration of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) using rRNA-targeted oligonucleotide probes. Phycologia 40:457-67.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R. Lara, E. et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.
Vesk, M. & Moestrup, O. 1987. The flagellar root system in Heterosigma akashiwo (Raphidophyceae). Protoplasma 137:15-28.
Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67:216-35.
Wetherbee, R., Jackson, C. J., Repetti, S. I., Clementson, L. A., Costa, J. F., van de Meene, A., Crawford, S. & Verbruggen, H. 2019. The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. J. Phycol. 55:257-78.
Wild, P., Schraner, E. M., Adler, H. & Humbel, B. M. 2001. Enhanced resolution of membranes in cultured cells by cryoimmobilization and freeze-substitution. Microsc. Res. Tech. 53:313-21.
Wu, W., Wang, L., Liao, Y. & Huang, B. 2015. Microbial eukaryotic diversity and distribution in a river plume and cyclonic eddy-influenced ecosystem in the South China Sea. MicrobiologyOpen 4:826-40.
Yamaguchi, H., Hoppenrath, M., Takishita, K. & Horiguchi, T. 2008. Haramonas pauciplastida sp. nov. (Raphidophyceae, Heterokontophyta) and phylogenetic analyses of Haramonas species using small subunit ribosomal RNA gene sequences. Phycol. Res. 56:127-38.
Yamaguchi, H., Nakayama, T., Murakami, A. & Inouye, I. 2010. Phylogeny and taxonomy of the Raphidophyceae (Heterokontophyta) and Chlorinimonas sublosa gen. et sp. nov., a new marine sand-dwelling raphidophyte. J. Plant Res. 123:333-42.
Yang, E. C., Boo, G. H., Kim, H. J., Cho, S. M., Boo, S. M., Andersen, R. A. & Yoon, H. S. 2012. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163:217-31.
Zapata, M., Rodríguez, F. & Garrido, J. L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195:29-45.
Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N. & Alva, V. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430:2237-43.
RefSeq
NC_004799.1, KJ569775.1, NC_024665.1, M24288.1, X15768.1, M82860.1, AF086950.1, AF157380.1, AF210743.1, AF112992.1, AY788937.1, DQ065612.1, AY864022.1, AB280605.1, AB459521.1, AB459522.1, KP780272.1, MT859097.1, MW045617.1, MW052523.1, MW052524.1, MT497912.1, MT497913.1, MW045558.1, MW045538.1, KP404867.1, AY180021.1, NC_000926.1, KP780272