Gene expression dynamics of natural assemblages of heterotrophic flagellates during bacterivory
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu audiovizuální média, časopisecké články, práce podpořená grantem
PubMed
37322519
PubMed Central
PMC10268365
DOI
10.1186/s40168-023-01571-5
PII: 10.1186/s40168-023-01571-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterivory, Functional genes, Glycosidases, Heterotrophic flagellates, Metatranscriptomics, Peptidases, Phagocytosis, Unamended incubations,
- MeSH
- ekosystém * MeSH
- Eukaryota * genetika MeSH
- exprese genu MeSH
- mořská voda mikrobiologie MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Marine heterotrophic flagellates (HF) are dominant bacterivores in the ocean, where they represent the trophic link between bacteria and higher trophic levels and participate in the recycling of inorganic nutrients for regenerated primary production. Studying their activity and function in the ecosystem is challenging since most of the HFs in the ocean are still uncultured. In the present work, we investigated gene expression of natural HF communities during bacterivory in four unamended seawater incubations. RESULTS: The most abundant species growing in our incubations belonged to the taxonomic groups MAST-4, MAST-7, Chrysophyceae, and Telonemia. Gene expression dynamics were similar between incubations and could be divided into three states based on microbial counts, each state displaying distinct expression patterns. The analysis of samples where HF growth was highest revealed some highly expressed genes that could be related to bacterivory. Using available genomic and transcriptomic references, we identified 25 species growing in our incubations and used those to compare the expression levels of these specific genes. Video Abstract CONCLUSIONS: Our results indicate that several peptidases, together with some glycoside hydrolases and glycosyltransferases, are more expressed in phagotrophic than in phototrophic species, and thus could be used to infer the process of bacterivory in natural assemblages.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–586. doi: 10.1038/s41579-019-0222-5. PubMed DOI PMC
Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:17058. doi: 10.1038/nmicrobiol.2017.58. PubMed DOI
Li WKW, McLaughlin FA, Lovejoy C, Carmack EC. Smallest algae thrive as the arctic ocean freshens. Science. 2009;326:539–539. doi: 10.1126/science.1179798. PubMed DOI
Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–12793. doi: 10.1073/pnas.0902080106. PubMed DOI PMC
Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc Lond B Biol Sci. 2010;365:2137–2149. doi: 10.1098/rstb.2010.0045. PubMed DOI PMC
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol. 2016;15:6–20. doi: 10.1038/nrmicro.2016.160. PubMed DOI
Keeling PJ, del Campo J. Marine protists are not just big bacteria. Curr Biol. 2017;27:R541–R549. doi: 10.1016/j.cub.2017.03.075. PubMed DOI
Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, Neely CJ, et al. Eukaryotic genomes from a global metagenomic dataset illuminate trophic modes and biogeography of ocean plankton. bioRxiv. 2022:2021.07.25.453713. Available from: https://www.biorxiv.org/content/10.1101/2021.07.25.453713v2 [cited 2 Jul 2022]. PubMed DOI PMC
Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C, Fernandez-Guerra A, et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics. 2022;2:100123. doi: 10.1016/j.xgen.2022.100123. PubMed DOI PMC
Duncan A, Barry K, Daum C, Eloe-Fadrosh E, Roux S, Schmidt K, et al. Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. Microbiome. 2022;10:67. doi: 10.1186/s40168-022-01254-7. PubMed DOI PMC
Gawryluk RMR, del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26:3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, et al. Comparative genomics reveals new functional insights in uncultured MAST species. ISME J. 2021;15:1767–1781. doi: 10.1038/s41396-020-00885-8. PubMed DOI PMC
Latorre F, Deutschmann IM, Labarre A, Obiol A, Krabberød AK, Pelletier E, et al. Niche adaptation promoted the evolutionary diversification of tiny ocean predators. PNAS. National Academy of Sciences; 2021;118. Available from: https://www.pnas.org/content/118/25/e2020955118 [cited 22 Jun 2021]. PubMed PMC
Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 2021;12:6651. doi: 10.1038/s41467-021-26918-0. PubMed DOI PMC
Cohen NR, Alexander H, Krinos AI, Hu SK, Lampe RH. Marine microeukaryote metatranscriptomics: sample processing and bioinformatic workflow recommendations for ecological applications. Front Marine Sci. 2022;9:858. doi: 10.3389/fmars.2022.867007. DOI
Lambert BS, Groussman RD, Schatz MJ, Coesel SN, Durham BP, Alverson AJ, et al. The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. PNAS. National Academy of Sciences; 2022;119. Available from: https://www.pnas.org/content/119/7/e2100916119 [cited 15 Feb 2022]. PubMed PMC
Kolody BC, McCrow JP, Allen LZ, Aylward FO, Fontanez KM, Moustafa A, et al. Diel transcriptional response of a California current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 2019;13:2817–33. doi: 10.1038/s41396-019-0472-2. PubMed DOI PMC
Louyakis AS, Gourlé H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol. 2018;20:842–861. doi: 10.1111/1462-2920.14029. PubMed DOI
Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc Natl Acad Sci U S A. 2015;112:E2182–E2190. doi: 10.1073/pnas.1421993112. PubMed DOI PMC
Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, Coesel SN, et al. Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol. 2022;6:218–229. doi: 10.1038/s41559-021-01606-w. PubMed DOI
Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, et al. A global ocean atlas of eukaryotic genes. Nat Commun. 2018;9:373. doi: 10.1038/s41467-017-02342-1. PubMed DOI PMC
Fenchel T. The ecology of heterotrophic microflagellates. In: Marshall KC, editor. Advances in Microbial Ecology. Boston: Springer US; 1986. pp. 57–97.
del Campo J, Sieracki ME, Molestina R, Keeling PJ, Massana R, Ruiz-Trillo I. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol. 2014;29:252–259. doi: 10.1016/j.tree.2014.03.006. PubMed DOI PMC
Jürgens K, Massana R. Protistan grazing on marine bacterioplankton. In: Kirchman DL, editor. Microbial ecology of the oceans. 2. Hoboken: Wiley; 2008. pp. 383–441.
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–546. doi: 10.1038/nrmicro1180. PubMed DOI
Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek. 2002;81:293–308. doi: 10.1023/A:1020591307260. PubMed DOI
Botelho RJ, Grinstein S. Phagocytosis. Curr Biol. 2011;21:R533–R538. doi: 10.1016/j.cub.2011.05.053. PubMed DOI
Mills DB. The origin of phagocytosis in Earth history. Interface Focus. 2020;10:20200019. doi: 10.1098/rsfs.2020.0019. PubMed DOI PMC
Boulais J, Trost M, Landry CR, Dieckmann R, Levy ED, Soldati T, et al. Molecular characterization of the evolution of phagosomes. Mol Syst Biol. 2010;6:423. doi: 10.1038/msb.2010.80. PubMed DOI PMC
Flannagan RS, Cosío G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009;7:355–366. doi: 10.1038/nrmicro2128. PubMed DOI
Bozzaro S, Bucci C, Steinert M. Phagocytosis and host–pathogen interactions in dictyostelium with a look at macrophages. Int Rev Cell Mol Biol. 2008;271:253–300. doi: 10.1016/S1937-6448(08)01206-9. PubMed DOI
Okada M, Huston CD, Mann BJ, Petri WA, Kita K, Nozaki T. Proteomic analysis of phagocytosis in the Enteric protozoan parasite Entamoeba histolytica. Eukaryotic Cell. 2005;4:827–31. doi: 10.1128/EC.4.4.827-831.2005. PubMed DOI PMC
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol. 2018;2:697–704. doi: 10.1038/s41559-018-0477-7. PubMed DOI
Massana R, Labarre A, López-Escardó D, Obiol A, Bucchini F, Hackl T, et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 2021;15:154–167. doi: 10.1038/s41396-020-00770-4. PubMed DOI PMC
Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, et al. Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory. ISME J. 2022;16:1409–19. PubMed PMC
Obiol A, Muhovic I, Massana R. Oceanic heterotrophic flagellates are dominated by a few widespread taxa. Limnol Oceanogr. 2021;66:4240–4253. doi: 10.1002/lno.11956. DOI
Massana R, Guillou L, Terrado R, Forn I, Pedrós-Alió C. Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat Microb Ecol. 2006;45:171–180. doi: 10.3354/ame045171. DOI
Labarre A, Obiol A, Wilken S, Forn I, Massana R. Expression of genes involved in phagocytosis in uncultured heterotrophic flagellates. Limnol Oceanogr. 2020;65:lno.11379. doi: 10.1002/lno.11379. DOI
Gasol JM, Cardelús C, Morán XAG, Balagué V, Forn I, Marrasé C, et al. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Sci Mar. 2016;80:63–77. doi: 10.3989/scimar.04480.06E. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20:718–731. doi: 10.1111/1755-0998.13147. PubMed DOI
Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 2019;8:100. doi: 10.1093/gigascience/giz100. PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257. doi: 10.1038/ncomms11257. PubMed DOI PMC
Bucchini F, Del Cortona A, Kreft Ł, Botzki A, Van Bel M, Vandepoele K. TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Res. 2021;49:101. doi: 10.1093/nar/gkab565. PubMed DOI PMC
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43:e78. doi: 10.1093/nar/gkv227. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Mika K, Marinić M, Singh M, Muter J, Brosens JJ, Lynch VJ. Evolutionary transcriptomics implicates new genes and pathways in human pregnancy and adverse pregnancy outcomes. eLife. 2021;10:e69584. doi: 10.7554/eLife.69584. PubMed DOI PMC
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 50: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–D551. doi: 10.1093/nar/gkaa970. PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal. 2. 10.24072/pcjournal.173.
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–368. doi: 10.1038/s41592-021-01101-x. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–1083.e21. doi: 10.1016/j.cell.2019.10.014. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc Lond Biol Sci. 2019;374:20190090. doi: 10.1098/rstb.2019.0090. PubMed DOI PMC
Li Q, Edwards KF, Schvarcz CR, Selph KE, Steward GF. Plasticity in the grazing ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that consumes Prochlorococcus and other bacteria. Limnol Oceanogr. 2021;66:47–60. doi: 10.1002/lno.11585. DOI
Li Q, Edwards KF, Schvarcz CR, Steward GF. Broad phylogenetic and functional diversity among mixotrophic consumers of Prochlorococcus. ISME J. 2022;16:1557–1569. doi: 10.1038/s41396-022-01204-z. PubMed DOI PMC
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. 2020. Available from: https://CRAN.R-project.org/package=vegan.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Alexander H, Jenkins B, Rynearson T, Saito M, Mercier M, Dyhrman S. Identifying reference genes with stable expression from high throughput sequence data. Front Microbiol. 2012;3:385. doi: 10.3389/fmicb.2012.00385. PubMed DOI PMC
Li Z, Zhang Y, Li W, Irwin AJ, Finkel ZV. Conservation and architecture of housekeeping genes in the model marine diatom Thalassiosira pseudonana. New Phytol. 2022;234:1363–1376. doi: 10.1111/nph.18039. PubMed DOI
Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics. 2010;96:259–265. doi: 10.1016/j.ygeno.2010.07.010. PubMed DOI
Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–935. doi: 10.1111/mec.14929. PubMed DOI
Vanni C, Schechter MS, Acinas SG, Barberán A, Buttigieg PL, Casamayor EO, et al. Unifying the known and unknown microbial coding sequence space. eLife. 2022;11:e67667. doi: 10.7554/eLife.67667. PubMed DOI PMC
Metegnier G, Paulino S, Ramond P, Siano R, Sourisseau M, Destombe C, et al. Species specific gene expression dynamics during harmful algal blooms. Sci Rep. 2020;10:6182. doi: 10.1038/s41598-020-63326-8. PubMed DOI PMC
Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–943. doi: 10.1038/s41559-018-0519-1. PubMed DOI
Ritonja A, Popović T, Kotnik M, Machleidt W, Turk V. Amino acid sequences of the human kidney cathepsins H and L. FEBS Lett. 1988;228:341–345. doi: 10.1016/0014-5793(88)80028-0. PubMed DOI
Berti PJ, Storer AC. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995;246:273–283. doi: 10.1006/jmbi.1994.0083. PubMed DOI
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim Biophys Acta Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Simon M, Azam F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser. 1989;51:201–213. doi: 10.3354/meps051201. DOI
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in bacteria-macrophage interaction: defenders or victims of circumstance? Front Cell Infect Microbiol. 2020;10:601072. doi: 10.3389/fcimb.2020.601072. PubMed DOI PMC
Gotthardt D, Warnatz HJ, Henschel O, Brückert F, Schleicher M, Soldati T. High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol Biol Cell. 2002;13:3508–3520. doi: 10.1091/mbc.e02-04-0206. PubMed DOI PMC
McKie-Krisberg ZM, Sanders RW, Gast RJ. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front Mar Sci. 2018;5:273. doi: 10.3389/fmars.2018.00273. DOI
Cohen NR, McIlvin MR, Moran DM, Held NA, Saunders JK, Hawco NJ, et al. Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nat Microbiol. 2021;6:173–186. doi: 10.1038/s41564-020-00814-7. PubMed DOI
Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol. 2000;203:89–95. doi: 10.1242/jeb.203.1.89. PubMed DOI
Baltscheffsky M, Schultz A, Baltscheffsky H. H+-PPases: a tightly membrane-bound family. FEBS Lett. 1999;457:527–533. doi: 10.1016/S0014-5793(99)90617-8. PubMed DOI
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol. 2001;11:593–600. doi: 10.1016/S0959-440X(00)00253-0. PubMed DOI
Zhang C, Griffith BR, Fu Q, Albermann C, Fu X, Lee I-K, et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science. 2006;313:1291–4. doi: 10.1126/science.1130028. PubMed DOI
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. PubMed DOI
Henrissat B, Sulzenbacher G, Bourne Y. Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol. 2008;18:527–533. doi: 10.1016/j.sbi.2008.09.003. PubMed DOI
Kukuruzinska MA, Lennon K. Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med. 1998;9:415–48. doi: 10.1177/10454411980090040301. PubMed DOI
Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567–590. doi: 10.1146/annurev-arplant-042110-103809. PubMed DOI
Reggiori F, Gabius H-J, Aureli M, Römer W, Sonnino S, Eskelinen E-L. Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J. 2021;38:625–647. doi: 10.1007/s10719-021-10007-x. PubMed DOI PMC
Cheng H, Shao Z, Lu C, Duan D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC Plant Biol. 2021;21:87. doi: 10.1186/s12870-021-02849-2. PubMed DOI PMC
Taira T, Gushiken C, Sugata K, Ohnuma T, Fukamizo T. Unique GH18 chitinase from Euglena gracilis: full-length cDNA cloning and characterization of its catalytic domain. Biosci Biotechnol Biochem. 2018;82:1090–1100. doi: 10.1080/09168451.2018.1459463. PubMed DOI
Seeleuthner Y, Mondy S, Lombard V, Carradec Q, Pelletier E, Wessner M, et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun. 2018;9:310. doi: 10.1038/s41467-017-02235-3. PubMed DOI PMC
Faik A. Xylan Biosynthesis: news from the Grass1. Plant Physiol. 2010;153:396–402. doi: 10.1104/pp.110.154237. PubMed DOI PMC
Romero AM, Mateo JJ, Maicas S. Characterization of an ethanol-tolerant 1,4-β-xylosidase produced by Pichia membranifaciens. Lett Appl Microbiol. 2012;55:354–61. doi: 10.1111/j.1472-765X.2012.03297.x. PubMed DOI
Hsieh YSY, Harris PJ. Xylans of red and green algae: what is known about their structures and how they are synthesised? Polymers. 2019;11:354. doi: 10.3390/polym11020354. PubMed DOI PMC
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330:219–22. doi: 10.1126/science.1192231. PubMed DOI
Lo Leggio L, Simmons TJ, Poulsen J-CN, Frandsen KEH, Hemsworth GR, Stringer MA, et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6:5961. doi: 10.1038/ncomms6961. PubMed DOI PMC
Nanjappa D, Sanges R, Ferrante MI, Zingone A. Diatom flagellar genes and their expression during sexual reproduction in Leptocylindrus danicus. BMC Genomics. 2017;18:813. doi: 10.1186/s12864-017-4210-8. PubMed DOI PMC
figshare
10.6084/m9.figshare.22801697