Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26262814
PubMed Central
PMC4817682
DOI
10.1038/ismej.2015.135
PII: ismej2015135
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika růst a vývoj izolace a purifikace MeSH
- biodiverzita MeSH
- Eukaryota fyziologie MeSH
- fytoplankton růst a vývoj MeSH
- heterotrofní procesy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To test whether protist grazing selectively affects the composition of aquatic bacterial communities, we combined high-throughput sequencing to determine bacterial community composition with analyses of grazing rates, protist and bacterial abundances and bacterial cell sizes and physiological states in a mesocosm experiment in which nutrients were added to stimulate a phytoplankton bloom. A large variability was observed in the abundances of bacteria (from 0.7 to 2.4 × 10(6) cells per ml), heterotrophic nanoflagellates (from 0.063 to 2.7 × 10(4) cells per ml) and ciliates (from 100 to 3000 cells per l) during the experiment (∼3-, 45- and 30-fold, respectively), as well as in bulk grazing rates (from 1 to 13 × 10(6) bacteria per ml per day) and bacterial production (from 3 to 379 μg per C l per day) (1 and 2 orders of magnitude, respectively). However, these strong changes in predation pressure did not induce comparable responses in bacterial community composition, indicating that bacterial community structure was resilient to changes in protist predation pressure. Overall, our results indicate that peaks in protist predation (at least those associated with phytoplankton blooms) do not necessarily trigger substantial changes in the composition of coastal marine bacterioplankton communities.
Centre for Ecology and Evolution in Microbial Model Systems Linnaeus University Kalmar Sweden
Department of Marine Sciences University of Otago Dunedin New Zealand
Zobrazit více v PubMed
Allers E, Gómez-Consarnau L, Pinhassi J, Gasol JM, Šimek K, Pernthaler J. (2007). Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol 9: 2417–2429. PubMed
Alonso C, Pernthaler J. (2006). Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8: 2022–2030. PubMed
Alonso-Sáez L, Balague V, Sà EL, Sanchez O, González JM, Pinhassi J et al. (2007). Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60: 98–112. PubMed
Andersson A, Larsson U, Hagström Å. (1986). Size-selective grazing by a microflagellate on pelagic bacteria. Mar Ecol Prog Ser 33: 51–57.
Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263.
Baltar F, Arístegui J, Gasol JM, Hernández-León S, Herndl GJ. (2007). Strong coast–ocean and surface–depthgradients in prokaryotic assemblage structure and activity in a coastal transition zone region. Aquat Microb Ecol 50: 63–74.
Bernard L, Courties C, Servais P, Troussellier M, Petit M, Lebaron P. (2000). Relationships among bacterial cell size, productivity, and genetic diversity in aquatic environments using cell sorting and flow cytometry. Microb Ecol 40: 148–158. PubMed
Boenigk J, Matz C, Jürgens K, Arndt H. (2002). Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat Microb Ecol 27: 195–202.
Brinkhoff T, Giebel H-A, Simon M. (2008). Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Archiv Microbiol 189: 531–539. PubMed
Buchan A, LeCleir GR, Gulvik CA, González JM. (2014). Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12: 686–698. PubMed
Chrzanowski TH, Simek K. (1990). Prey-size selection by freshwater flagellated protozoa. Limnol Oceanogr 35: 1429–1436.
Corno G, Jürgens K. (2006). Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72: 78–86. PubMed PMC
Del Giorgio PA, Gasol JM. (2008). Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL (ed). Microbial Ecology of the Ocean, 2nd edn. Wiley-Liss: : New York NY, USA, pp 243–298.
Del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agusti S, Duarte CM. (1996). Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr 41: 1169–1179.
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al. (2006). Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072. PubMed PMC
Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. (2008). Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathogen Dis 5: 459–472. PubMed
Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461. PubMed
Eilers H, Pernthaler J, Peplies J, Glöckner FO, Gerdts G, Amann R. (2001). Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134–5142. PubMed PMC
Epstein SS, Burkovsky IV, Shiaris MP. (1992). Ciliate grazing on bacteria, flagellates, and microalgae in a temperate zone sandy tidal flat: ingestion rates and food niche partitioning. J Exp Mar Biol Ecol 165: 103–123.
Falcioni T, Papa S, Gasol JM. (2008). Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic rituations of planktonic bacterial death. Appl Environ Microbiol 74: 1767–1779. PubMed PMC
Fenchel T. (1980). Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb Ecol 6: 13–25. PubMed
Fierer N, Hamady M, Lauber CL, Knight R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci 105: 17994. PubMed PMC
Fu Y, O'Kelly C, Sieracki M, Distel DL. (2003). Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins. Appl Environ Microbiol 69: 6848–6855. PubMed PMC
Fuchs BM, Woebken D, Zubkov MV, Burkill P, Amann R. (2005). Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquat Microb Ecol 39: 145–157.
Gasol JM, Arístegui J. (2007). Cytometric evidence reconciling the toxicity and usefulness of CTC as a marker of bacterial activity. Aquat Microb Ecol 46: 71–83.
Gasol JM, Giorgio PAD. (2000). Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64: 197–224.
Gasol JM, Giorgio PAD, Massana R, Duarte CM. (1995). Active versus inactive bacteria: size-dependence in a coastal marine plankton community. Mar Ecol Prog Ser 128: 91–97.
Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagström Å. (1999). Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65: 4475–4483. PubMed PMC
Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B et al. (2011). Defining seasonal marine microbial community dynamics. ISME J 6: 298–308. PubMed PMC
Gonzalez JM, Sherr EB, Sherr BF. (1990). Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56: 583–589. PubMed PMC
González JM, Sherr EB, Sherr BF. (1993). Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Mar Ecol Prog Ser 102: 257–267.
Gregori G, Citterio S, Ghani A, Labra M, Sgorbati S, Brown S et al. (2001). Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 67: 4662–4670. PubMed PMC
Hahn MW, Höfle MG. (1999). Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacteiral cell size, and bacterial community composition. Appl Environ Microbiol 65: 4863–4872. PubMed PMC
Hahn MW, Höfle MG. (2001). Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35: 113–121. PubMed
Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. (2008). Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5: 235–237. PubMed PMC
Jürgens K, Güde H. (1994). The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112: 169–188.
Jürgens K, Massana R. (2008). Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed). Microbial Ecology of the Oceans, 2nd edn. Wiley: : Hoboken, NJ, USA, pp 383–441.
Jürgens K, Pernthaler J, Schalla S, Amann R. (1999). Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65: 1241–1250. PubMed PMC
Kinner N, Harvey R, Blakeslee K, Novarino G, Meeker L. (1998). Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer. Appl Environ Microbiol 64: 618–625. PubMed PMC
Kirchman D, K'Ness E, Hodson R. (1985). Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49: 599–607. PubMed PMC
Langenheder S, Jürgens K. (2001). Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol Oceanogr 46: 121–134.
Lauber CL, Hamady M, Knight R, Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75: 5111–5120. PubMed PMC
Longnecker K, Sherr BF, Sherr EB. (2005). Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem. Appl Environ Microbiol 71: 7737–7749. PubMed PMC
Longnecker K, Wilson MJ, Sherr EB, Sherr BF. (2010). Effect of top-down control on cell-specific activity and diversity of active marine bacterioplankton. Aquat Microb Ecol 58: 153–165.
Mary I, Heywood JL, Fuchs BM, Amann R, Tarran GA, Burkill PH et al. (2006). SAR11 dominance among metabolically active low nucleic acidd bacterioplankton in surface waters among an Atlantic meridional transect. Aquat Microb Ecol 45: 107–113.
Massana R, Jurgens K. (2003). Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat cultures. Aquat Microb Ecol 32: 11–22.
Matz C, Boenigk J, Arndt H, Jürgens K. (2002). Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquatic microbial ecology 27: 137–148.
Matz C, Jürgens K. (2001). Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates. Appl Environ Microbiol 67: 814–820. PubMed PMC
Oksanen J, Blanchet F, Kindt R, Legendre P, O'Hara R, Simpson G et al. (2011), Vegan: Community Ecology Package. R package version 1.17-5. Available at: http://CRAN.R-project.org/package=vegan.R-project.org/package=vegan last accessed 12 June 2015.
Parsons T, Maita Y, Lalli C. (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press: : Oxford, UK.
Pedrós-Alió C, Calderón-Paz JI, Gasol JM. (2000). Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32: 157–165. PubMed
Pernthaler J, Posch T, Simek K, Vrba J, Amann R, Psenner R. (1997). Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl Environ Microbiol 63: 596–601. PubMed PMC
Pernthaler J, Zöllner E, Warnecke F, Jürgens K. (2004). Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70: 6272–6281. PubMed PMC
Pernthaler J. (2005). Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3: 537–546. PubMed
Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A et al. (2004). Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70: 6753–6766. PubMed PMC
Price MN, Dehal PS, Arkin AP. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641–1650. PubMed PMC
R Core Team. (2015) R: A Language and Environment for Statistical Computing [Internet]. R Foundation for Statistical Computing: Vienna, Austria, 2013. Available at: http://www.r-project.org. (last accessed 12 June 2015.
Riemann L, Steward GF, Azam F. (2000). Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66: 578–587. PubMed PMC
Salat J, Marrasé C. (1994). Exponential and linear estimations of gazing on bacteria: effects of changes in the proportion of marked cells. Mar Ecol Prog Ser 104: 205–209.
Sandaa RA, Gómez-Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG et al. (2009). Viral control of bacterial biodiversity—evidence from a nutrient-enriched marine mesocosm experiment. Environ Microbiol 11: 2585–2597. PubMed
Sarmento H, Gasol JM. (2012). Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol 14: 2348–2360. PubMed
Servais P, Casamayor EO, Courties C, Catala P, Parthuisot N, Lebaron P. (2003). Activity and diversity of bacterial cells with high and low nucleic acid content. Aquat Microb Ecol 33: 41–51.
Sherr BF, Giorgio PD, Sherr EB. (1999). Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC. Aquat Microb Ecol 18: 117–131.
Sherr BF, Sherr EB, Fallon RD. (1987). Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53: 958–965. PubMed PMC
Sherr BF, Sherr EB, McDaniel J. (1992). Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol 58: 2381–2385. PubMed PMC
Simek K, Bobkova J, Macek M, Nedoma J. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40: 1077–1090.
Simek K, Hartman P, Nedoma J, Pernthaler J, Springmann D, Vrba J et al. (1997). Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservior during the summer phytoplankton maximum. Aquat Microb Ecol 12: 49–63.
Šimek K, Kojecká P, Nedoma J, Hartman P, Vrba J, Dolan JR. (1999). Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol Oceanogr 44: 1634–1644.
Šimek K, Nedoma J, Pernthaler J, Posch T, Dolan JR. (2002). Altering the balance between bacterial production and protistan bacterivory triggers shifts in freshwater bacterial community composition. Antonie Van Leeuwenhoek 81: 453–463. PubMed
Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornňák K et al. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59: 1477–1492.
Sintes E, Del Giorgio P. (2014). Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front Microbiol 5: 453. PubMed PMC
Sjöstedt J, Koch-Schmidt P, Pontarp M, Canbäck B, Tunlid A, Lundberg P et al. (2012). Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl Environ Microbiol 78: 1361–1369. PubMed PMC
Smith VH. (2007). Microbial diversity–productivity relationships in aquatic ecosystems. FEMS Microbiol Ecol 62: 181–186. PubMed
Smith DC, Azam F. (1992). A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6: 107–114.
Suzuki MT. (1999). Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Microb Ecol 20: 261–272.
Tadonléké R, Planas D, Lucotte M. (2005). Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microb Ecol 49: 325–341. PubMed
Tanaka T, Thingstad TF, Gasol JM, Cardelús C, Jezbera J, Sala MM et al. (2009). Determining the availability of phosphate and glucose for bacteria in P-limited mesocosms of NW Mediterranean surface waters. Aquat Microb Ecol 56: 81–91.
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336: 608–611. PubMed
Thingstad TF. (2000). Control of bacterial growth in idealized food webs. In: Kirchman DL (ed). Microbial Ecology of the Oceans. Wiley-Liss: : New York, NY, USA, pp 229–260.
Unrein F, Gasol JM, Not F, Forn I, Massana R. (2014). Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8: 164–176. PubMed PMC
Unrein F, Massana R, Alonso-Sáez L, Gasol JM. (2007). Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52: 456–469.
Vaqué D, Casamayor EO, Gasol JM. (2001). Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA-content. Aquat Microb Ecol 25: 163–177.
Vaqué D, Agustí S, Duarte CM. (2004). Response of bacterial grazing rates to experimental manipulation of an Antarctic coastal nanoflagellate community. Aquat Microb Ecol 36: 41–52.
Vazquez-Dominguez E, Peters F, Gasol JM, Vaqué D. (1999). Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently tracers combined with flow cytometry. Aquat Microb Ecol 20: 119–128.
Vila M, Simó R, Kiene RP, Pinhassi J, González JM, Moran MA et al. (2004). Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Appl Environ Microbiol 70: 4648–4657. PubMed PMC
Vila-Costa M, Gasol JM, Sharma S, Moran MA. (2012). Community analysis of high-and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16 S rDNA pyrosequencing. Environ Microbiol 14: 1390–1402. PubMed
Yokokawa T, Nagata T. (2005). Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl Environ Microbiol 71: 6799–6807. PubMed PMC
Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. (2001). Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3: 304–311. PubMed
Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory