Eukaryote-Wide Distribution of a Family of Longin Domain-Containing GAP Complexes for Small GTPases
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
ANR-20-CE13-0007
Centre National de la Recherche Scientifique
Agence Nationale de la Recherche
RES0043758
Natural Sciences and Engineering Research Council of Canada
RES0046091
Natural Sciences and Engineering Research Council of Canada
PubMed
40708359
PubMed Central
PMC12290439
DOI
10.1111/tra.70016
Knihovny.cz E-zdroje
- Klíčová slova
- Arf GTPases, DENN domain, GTPase‐activating proteins, LECA, molecular phylogenetics, nutrient signaling, pan‐eukaryotic homology search, structural modeling,
- MeSH
- lidé MeSH
- monomerní proteiny vázající GTP * metabolismus MeSH
- proteinové domény MeSH
- proteiny aktivující GTPasu * metabolismus genetika chemie MeSH
- výměnné faktory guaninnukleotidů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- monomerní proteiny vázající GTP * MeSH
- proteiny aktivující GTPasu * MeSH
- výměnné faktory guaninnukleotidů MeSH
Arf and Rab family small GTPases and their regulators, GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), play a central role in membrane trafficking. In this study, we focused on a recently reported GAP for Arf (and potentially Rab) proteins, the CSW complex, a part of a small family of longin domain-containing proteins that form complexes with GAP activity. This family also includes folliculin and GATOR1, which are GAPs for the Rag/Gtr GTPases. All three complexes are associated with lysosomes and play a role in nutrient signaling, the latter two being directly involved in the mTOR pathway. The role of CSW is not clear, but in addition to having GAP activity on Arf proteins in vitro, its mutation causes severe neurodegenerative diseases. Here we update the reported pan-eukaryotic presence of folliculin and GATOR1, and demonstrate that CSW is also found throughout eukaryotes, though with sporadic distribution. We identify highly conserved motifs in all CSW subunits, some shared with the catalytic subunits of folliculin and GATOR1, that provide new potential avenues for experimental exploration. Remarkably, one such conserved sequence, the "GP" motif, is also found in structurally related longin proteins present in the archaeal ancestor of eukaryotes.
Department of Biological Sciences University of Alberta Edmonton Alberta Canada
Division of Infectious Diseases Department of Medicine University of Alberta Edmonton Alberta Canada
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Université Paris Cité CNRS Institut Jacques Monod Paris France
Zobrazit více v PubMed
Donaldson J. G. and Jackson C. L., “ARF Family G Proteins and Their Regulators: Roles in Membrane Transport, Development and Disease,” Nature Reviews. Molecular Cell Biology 12 (2011): 362–375, 10.1038/nrm3117. PubMed DOI PMC
Sztul E., Chen P.‐W., Casanova J. E., et al., “ARF GTPases and Their GEFs and GAPs: Concepts and Challenges,” Molecular Biology of the Cell 30 (2019): 1249–1271, 10.1091/mbc.E18-12-0820. PubMed DOI PMC
Ishida M., Oguchi E., and Fukuda M., “Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases,” Cell Structure and Function 41 (2016): 61–79, 10.1247/csf.16008. PubMed DOI
Levine T. P., Daniels R. D., Wong L. H., Gatta A. T., Gerondopoulos A., and Barr F. A., “Discovery of New Longin and Roadblock Domains That Form Platforms for Small GTPases in Ragulator and TRAPP‐II,” Small GTPases 4 (2013): 62–69, 10.4161/sgtp.24262. PubMed DOI PMC
Marat A. L., Dokainish H., and McPherson P. S., “DENN Domain Proteins: Regulators of Rab GTPases,” Journal of Biological Chemistry 286 (2011): 13791–13800, 10.1074/jbc.R110.217067. PubMed DOI PMC
Yoshimura S., Gerondopoulos A., Linford A., Rigden D. J., and Barr F. A., “Family‐Wide Characterization of the DENN Domain Rab GDP‐GTP Exchange Factors,” Journal of Cell Biology 191 (2010): 367–381, 10.1083/jcb.201008051. PubMed DOI PMC
Inoue H. and Randazzo P. A., “Arf GAPs and Their Interacting Proteins,” Traffic 8 (2007): 1465–1475, 10.1111/j.1600-0854.2007.00624.x. PubMed DOI
Schlacht A., Herman E. K., Klute M. J., Field M. C., and Dacks J. B., “Missing Pieces of an Ancient Puzzle: Evolution of the Eukaryotic Membrane‐Trafficking System,” Cold Spring Harbor Perspectives in Biology 6 (2014): a016048, 10.1101/cshperspect.a016048. PubMed DOI PMC
East M. P., Bowzard J. B., Dacks J. B., and Kahn R. A., “ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase‐Activating Protein (GAP) Domain for Arf Protein Family GTPases,” Journal of Biological Chemistry 287 (2012): 39538–39553, 10.1074/jbc.M112.417477. PubMed DOI PMC
Bos J. L., Rehmann H., and Wittinghofer A., “GEFs and GAPs: Critical Elements in the Control of Small G Proteins,” Cell 129 (2007): 865–877, 10.1016/j.cell.2007.05.018. PubMed DOI
Frasa M. A. M., Koessmeier K. T., Ahmadian M. R., and Braga V. M. M., “Illuminating the Functional and Structural Repertoire of Human TBC/RABGAPs,” Nature Reviews. Molecular Cell Biology 13 (2012): 67–73, 10.1038/nrm3267. PubMed DOI
De Franceschi N., Wild K., Schlacht A., Dacks J. B., Sinning I., and Filippini F., “Longin and gaf Domains: Structural Evolution and Adaptation to the Subcellular Trafficking Machinery,” Traffic 15 (2014): 104–121, 10.1111/tra.12124. PubMed DOI
Homma Y., Hiragi S., and Fukuda M., “Rab Family of Small GTPases: An Updated View on Their Regulation and Functions,” FEBS Journal 288 (2021): 36–55, 10.1111/febs.15453. PubMed DOI PMC
Mizuno‐Yamasaki E., Rivera‐Molina F., and Novick P., “GTPase Networks in Membrane Traffic,” Annual Review of Biochemistry 81 (2012): 637–659, 10.1146/annurev-biochem-052810-093700. PubMed DOI PMC
Jackson C. L., Ménétrey J., Sivia M., Dacks J. B., and Eliáš M., “An Evolutionary Perspective on Arf Family GTPases,” Current Opinion in Cell Biology 85 (2023): 102268, 10.1016/j.ceb.2023.102268. PubMed DOI
Kjos I., Vestre K., Guadagno N. A., Borg Distefano M., and Progida C., “Rab and Arf Proteins at the Crossroad Between Membrane Transport and Cytoskeleton Dynamics,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 1865 (2018): 1397–1409, 10.1016/j.bbamcr.2018.07.009. PubMed DOI
Li F.‐L. and Guan K.‐L., “The Arf Family GTPases: Regulation of Vesicle Biogenesis and Beyond,” BioEssays 45 (2023): 2200214, 10.1002/bies.202200214. PubMed DOI PMC
Eme L., Tamarit D., Caceres E. F., et al., “Inference and Reconstruction of the Heimdallarchaeial Ancestry of Eukaryotes,” Nature 618 (2023): 992–999, 10.1038/s41586-023-06186-2. PubMed DOI PMC
Zaremba‐Niedzwiedzka K., Caceres E. F., Saw J. H., et al., “Asgard archaea Illuminate the Origin of Eukaryotic Cellular Complexity,” Nature 541 (2017): 353–358, 10.1038/nature21031. PubMed DOI
Avcı B., Panagiotou K., Albertsen M., Ettema T. J. G., Schramm A., and Kjeldsen K. U., “Peculiar Morphology of Asgard Archaeal Cells Close to the Prokaryote‐Eukaryote Boundary,” MBio 16 (2025): e00327‐25, 10.1128/mbio.00327-25. PubMed DOI PMC
Imachi H., Nobu M. K., Nakahara N., et al., “Isolation of an Archaeon at the Prokaryote–Eukaryote Interface,” Nature 577 (2020): 519–525, 10.1038/s41586-019-1916-6. PubMed DOI PMC
Imachi H., Nobu M. K., Ishii S., et al., “Eukaryotes' Closest Relatives Are Internally Simple DOI
Vargová R., Chevreau R., Alves M., et al., “The Asgard Archaeal Origins of Arf Family GTPases Involved in Eukaryotic Organelle Dynamics,” Nature Microbiology 10 (2025): 495–508, 10.1038/s41564-024-01904-6. PubMed DOI
Zhu J., Xie R., Ren Q., et al., “Asgard Arf GTPases Can Act as Membrane‐Associating Molecular Switches With the Potential to Function in Organelle Biogenesis,” Nature Communications 16 (2025): 2622, 10.1038/s41467-025-57902-7. PubMed DOI PMC
Barlow L. D. and Dacks J. B., “Seeing the Endomembrane System for the Trees: Evolutionary Analysis Highlights the Importance of Plants as Models for Eukaryotic Membrane‐Trafficking,” Seminars in Cell & Developmental Biology 80 (2018): 142–152, 10.1016/j.semcdb.2017.09.027. PubMed DOI
Klinger C. M., Spang A., Dacks J. B., and Ettema T. J. G., “Tracing the Archaeal Origins of Eukaryotic Membrane‐Trafficking System Building Blocks,” Molecular Biology and Evolution 33 (2016): 1528–1541, 10.1093/molbev/msw034. PubMed DOI
More K., Klinger C. M., Barlow L. D., and Dacks J. B., “Evolution and Natural History of Membrane Trafficking in Eukaryotes,” Current Biology 30 (2020): R553–R564, 10.1016/j.cub.2020.03.068. PubMed DOI
DeJesus‐Hernandez M., Mackenzie I. R., Boeve B. F., et al., “Expanded GGGGCC Hexanucleotide Repeat in Non‐Coding Region of C9ORF72 Causes Chromosome 9p‐Linked Frontotemporal Dementia and Amyotrophic Lateral Sclerosis,” Neuron 72 (2011): 245–256, 10.1016/j.neuron.2011.09.011. PubMed DOI PMC
Levine T. P., Daniels R. D., Gatta A. T., Wong L. H., and Hayes M. J., “The Product of C9orf72, a Gene Strongly Implicated in Neurodegeneration, Is Structurally Related to DENN Rab‐GEFs,” Bioinformatics 29 (2013): 499–503, 10.1093/bioinformatics/bts725. PubMed DOI PMC
Renton A. E., Majounie E., Waite A., et al., “A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21‐Linked ALS‐FTD,” Neuron 72 (2011): 257–268, 10.1016/j.neuron.2011.09.010. PubMed DOI PMC
Jansen R. M. and Hurley J. H., “Longin Domain gap Complexes in Nutrient Signalling, Membrane Traffic and Neurodegeneration,” FEBS Letters 597 (2023): 750–761, 10.1002/1873-3468.14538. PubMed DOI PMC
Su M.‐Y., Fromm S. A., Remis J., Toso D. B., and Hurley J. H., “Structural Basis for the ARF GAP Activity and Specificity of the C9orf72 Complex,” Nature Communications 12 (2021): 3786, 10.1038/s41467-021-24081-0. PubMed DOI PMC
Tang D., Sheng J., Xu L., Yan C., and Qi S., “The C9orf72‐SMCR8‐WDR41 Complex Is a GAP for Small GTPases,” Autophagy 16 (2020): 1542–1543, 10.1080/15548627.2020.1779473. PubMed DOI PMC
Zhang D., Iyer L. M., He F., and Aravind L., “Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease,” Frontiers in Genetics 3 (2012): 283, 10.3389/fgene.2012.00283. PubMed DOI PMC
Cui Z., Joiner A. M. N., Jansen R. M., and Hurley J. H., “Amino Acid Sensing and Lysosomal Signaling Complexes,” Current Opinion in Structural Biology 79 (2023): 102544, 10.1016/j.sbi.2023.102544. PubMed DOI
Lawrence R. E., Fromm S. A., Fu Y., et al., “Structural Mechanism of a Rag GTPase Activation Checkpoint by the Lysosomal Folliculin Complex,” Science 366 (2019): 971–977, 10.1126/science.aax0364. PubMed DOI PMC
Liu G. Y. and Sabatini D. M., “mTOR at the Nexus of Nutrition, Growth, Ageing and Disease,” Nature Reviews. Molecular Cell Biology 21 (2020): 183–203, 10.1038/s41580-019-0199-y. PubMed DOI PMC
Meng J. and Ferguson S. M., “GATOR1‐Dependent Recruitment of FLCN–FNIP to Lysosomes Coordinates Rag GTPase Heterodimer Nucleotide Status in Response to Amino Acids,” Journal of Cell Biology 217 (2018): 2765–2776, 10.1083/jcb.201712177. PubMed DOI PMC
Amick J., Tharkeshwar A. K., Talaia G., and Ferguson S. M., “PQLC2 Recruits the C9orf72 Complex to Lysosomes in Response to Cationic Amino Acid Starvation,” Journal of Cell Biology 219 (2019): e201906076, 10.1083/jcb.201906076. PubMed DOI PMC
Talaia G., Amick J., and Ferguson S. M., “Receptor‐Like Role for PQLC2 Amino Acid Transporter in the Lysosomal Sensing of Cationic Amino Acids,” Proceedings of the National Academy of Sciences 118 (2021): e2014941118, 10.1073/pnas.2014941118. PubMed DOI PMC
Dokudovskaya S., Waharte F., Schlessinger A., et al., “A Conserved Coatomer‐Related Complex Containing Sec13 and Seh1 Dynamically Associates With the Vacuole in PubMed DOI PMC
The UniProt Consortium , “UniProt: The Universal Protein Knowledgebase in 2025,” Nucleic Acids Research 53 (2025): D609–D617, 10.1093/nar/gkae1010. PubMed DOI PMC
Burki F., Roger A. J., Brown M. W., and Simpson A. G. B., “The New Tree of Eukaryotes,” Trends in Ecology & Evolution 35 (2020): 43–55, 10.1016/j.tree.2019.08.008. PubMed DOI
Eglit Y., Shiratori T., Jerlström‐Hultqvist J., et al., “ PubMed DOI
Schön M. E., Zlatogursky V. V., Singh R. P., et al., “Single Cell Genomics Reveals Plastid‐Lacking Picozoa Are Close Relatives of Red Algae,” Nature Communications 12 (2021): 6651, 10.1038/s41467-021-26918-0. PubMed DOI PMC
Williamson K., Eme L., Baños H., et al., “A Robustly Rooted Tree of Eukaryotes Reveals Their Excavate Ancestry,” Nature 640 (2025): 1–8, 10.1038/s41586-025-08709-5. PubMed DOI
Torruella G., Galindo L. J., Moreira D., and López‐García P., “Phylogenomics of Neglected Flagellated Protists Supports a Revised Eukaryotic Tree of Life,” Current Biology 35 (2025): 198–207.e4, 10.1016/j.cub.2024.10.075. PubMed DOI
Anderson I. J. and Loftus B. J., “ PubMed DOI
Novák L., Zubáčová Z., Karnkowska A., et al., “Arginine Deiminase Pathway Enzymes: Evolutionary History in Metamonads and Other Eukaryotes,” BMC Evolutionary Biology 16 (2016): 197, 10.1186/s12862-016-0771-4. PubMed DOI PMC
Kawano‐Kawada M., Manabe K., Ichimura H., et al., “A PQ‐Loop Protein Ypq2 Is Involved in the Exchange of Arginine and Histidine Across the Vacuolar Membrane of PubMed DOI PMC
Spang A., Saw J. H., Jørgensen S. L., et al., “Complex Archaea That Bridge the Gap Between Prokaryotes and Eukaryotes,” Nature 521 (2015): 173–179, 10.1038/nature14447. PubMed DOI PMC
Dombrowski N., Teske A. P., and Baker B. J., “Expansive Microbial Metabolic Versatility and Biodiversity in Dynamic Guaymas Basin Hydrothermal Sediments,” Nature Communications 9 (2018): 4999, 10.1038/s41467-018-07418-0. PubMed DOI PMC
Dong X., Greening C., Rattray J. E., et al., “Metabolic Potential of Uncultured Bacteria and Archaea Associated With Petroleum Seepage in Deep‐Sea Sediments,” Nature Communications 10 (2019): 1816, 10.1038/s41467-019-09747-0. PubMed DOI PMC
Liang R., Li Z., Lau Vetter M. C. Y., et al., “Genomic Reconstruction of Fossil and Living Microorganisms in Ancient Siberian Permafrost,” Microbiome 9 (2021): 110, 10.1186/s40168-021-01057-2. PubMed DOI PMC
Wong H. L., MacLeod F. I., White R. A., Visscher P. T., and Burns B. P., “Microbial Dark Matter Filling the Niche in Hypersaline Microbial Mats,” Microbiome 8 (2020): 135, 10.1186/s40168-020-00910-0. PubMed DOI PMC
Zhao R. and Biddle J. F., “Helarchaeota and Co‐Occurring Sulfate‐Reducing Bacteria in Subseafloor Sediments From the Costa Rica Margin,” ISME Communications 1 (2021): 25, 10.1038/s43705-021-00027-x. PubMed DOI PMC
Zhang J., Feng X., Li M., et al., “Deep Origin of Eukaryotes Outside Heimdallarchaeia Within Asgardarchaeota,” Nature 642 (2025): 1–9, 10.1038/s41586-025-08955-7. PubMed DOI PMC
Tran L. T., Akıl C., Senju Y., and Robinson R. C., “The Eukaryotic‐Like Characteristics of Small GTPase, Roadblock and TRAPPC3 Proteins From Asgard Archaea,” Communications Biology 7 (2024): 1–13, 10.1038/s42003-024-05888-1. PubMed DOI PMC
Hatano T., Palani S., Papatziamou D., et al., “Asgard Archaea Shed Light on the Evolutionary Origins of the Eukaryotic Ubiquitin‐ESCRT Machinery,” Nature Communications 13 (2022): 3398, 10.1038/s41467-022-30656-2. PubMed DOI PMC
Serfontein J., Nisbet R. E. R., Howe C. J., and de Vries P. J., “Evolution of the TSC1/TSC2‐TOR Signaling Pathway,” Science Signaling 3 (2010): ra49, 10.1126/scisignal.2000803. PubMed DOI
van Dam T. J. P., Zwartkruis F. J. T., Bos J. L., and Snel B., “Evolution of the TOR Pathway,” Journal of Molecular Evolution 73 (2011): 209–220, 10.1007/s00239-011-9469-9. PubMed DOI PMC
Richter D. J., Berney C., Strassert J. F. H., et al., “EukProt: A Database of Genome‐Scale Predicted Proteins Across the Diversity of Eukaryotes,” Peer Community Journal 2 (2022): e56, 10.24072/pcjournal.173. DOI
Blaz J., Galindo L. J., Heiss A. A., et al., “One High Quality Genome and Two Transcriptome Datasets for New Species of Mantamonas, a Deep‐Branching Eukaryote Clade,” Scientific Data 10 (2023): 603, 10.1038/s41597-023-02488-2. PubMed DOI PMC
Záhonová K., Low R. S., Warren C. J., et al., “Evolutionary Analysis of Cellular Reduction and Anaerobicity in the Hyper‐Prevalent Gut Microbe Blastocystis,” Current Biology 33 (2023): 2449–2464.e8, 10.1016/j.cub.2023.05.025. PubMed DOI
Valach M., Moreira S., Petitjean C., et al., “Recent Expansion of Metabolic Versatility in PubMed DOI PMC
Tikhonenkov D. V., Mikhailov K. V., Gawryluk R. M. R., et al., “Microbial Predators Form a New Supergroup of Eukaryotes,” Nature 612 (2022): 714–719, 10.1038/s41586-022-05511-5. PubMed DOI
Katoh K. and Standley D. M., “MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability,” Molecular Biology and Evolution 30 (2013): 772–780, 10.1093/molbev/mst010. PubMed DOI PMC
Capella‐Gutiérrez S., Silla‐Martínez J. M., and Gabaldón T., “trimAl: A Tool for Automated Alignment Trimming in Large‐Scale Phylogenetic Analyses,” Bioinformatics 25 (2009): 1972–1973, 10.1093/bioinformatics/btp348. PubMed DOI PMC
Minh B. Q., Schmidt H. A., Chernomor O., et al., “IQ‐TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era,” Molecular Biology and Evolution 37 (2020): 1530–1534, 10.1093/molbev/msaa015. PubMed DOI PMC
Criscuolo A. and Gribaldo S., “BMGE (Block Mapping and Gathering With Entropy): A New Software for Selection of Phylogenetic Informative Regions From Multiple Sequence Alignments,” BMC Evolutionary Biology 10 (2010): 210, 10.1186/1471-2148-10-210. PubMed DOI PMC
Crooks G. E., Hon G., Chandonia J.‐M., and Brenner S. E., “WebLogo: A Sequence Logo Generator,” Genome Research 14 (2004): 1188–1190, 10.1101/gr.849004. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., et al., “SWISS‐MODEL: Homology Modelling of Protein Structures and Complexes,” Nucleic Acids Research 46 (2018): W296–W303, 10.1093/nar/gky427. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., et al., “Highly Accurate Protein Structure Prediction With AlphaFold,” Nature 596 (2021): 583–589, 10.1038/s41586-021-03819-2. PubMed DOI PMC
Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., and Steinegger M., “ColabFold: Making Protein Folding Accessible to All,” Nature Methods 19 (2022): 679–682, 10.1038/s41592-022-01488-1. PubMed DOI PMC
Gilchrist C. L. M., Mirdita M., and Steinegger M., Multiple Protein Structure Alignment at Scale With FoldMason (bioRxiv, 2024), 10.1101/2024.08.01.606130. DOI
Su M.‐Y., Fromm S. A., Zoncu R., and Hurley J. H., “Structure of the C9orf72 Arf GAP Complex Haploinsufficient in ALS and FTD,” Nature 585 (2020): 251–255, 10.1038/s41586-020-2633-x. PubMed DOI PMC
Zhang Y., “TM‐Align: A Protein Structure Alignment Algorithm Based on the TM‐Score,” Nucleic Acids Research 33 (2005): 2302–2309, 10.1093/nar/gki524. PubMed DOI PMC