The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RES0043758
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
RES0046091
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ANR-20-CE13-0007
Agence Nationale de la Recherche (French National Research Agency)
ANR-10-INBS-05
French Infrastructure for Integrated Structural Biology (FRISBI)
PubMed
39849086
DOI
10.1038/s41564-024-01904-6
PII: 10.1038/s41564-024-01904-6
Knihovny.cz E-zdroje
- MeSH
- ADP-ribosylační faktory metabolismus genetika MeSH
- Archaea * genetika metabolismus MeSH
- archeální proteiny metabolismus genetika chemie MeSH
- Eukaryota genetika metabolismus MeSH
- eukaryotické buňky metabolismus MeSH
- fylogeneze * MeSH
- GTP-fosfohydrolasy metabolismus genetika chemie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- organely * metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ADP-ribosylační faktory MeSH
- archeální proteiny MeSH
- GTP-fosfohydrolasy MeSH
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation. The Arf family is ubiquitous among eukaryotes, but its origins remain elusive. Here we report a group of prokaryotic GTPases, the ArfRs, which are widely present in Asgardarchaeota. Phylogenetic analyses reveal that eukaryotic Arf family proteins arose from the ArfR group. Expression of representative Asgardarchaeota ArfR proteins in yeast and X-ray crystallographic studies show that ArfR GTPases possess the mechanism of membrane binding and structural features unique to Arf family proteins. Our results indicate that Arf family GTPases originated in the archaeal ancestor of eukaryotes, consistent with aspects of the endomembrane system evolving early in eukaryogenesis.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Synchrotron SOLEIL l'Orme des Merisiers Saint Aubin France
Université Paris Cité CNRS Institut Jacques Monod Paris France
Université Paris Saclay CEA CNRS Institute for Integrative Biology of the Cell Gif sur Yvette France
Zobrazit více v PubMed
Donoghue, P. C. J. et al. Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33, R919–R929 (2023). PubMed
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019). PubMed
López-García, P. & Moreira, D. The symbiotic origin of the eukaryotic cell. C. R. Biol. 346, 55–73 (2023). PubMed
Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 75 (2014).
Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024). PubMed
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). PubMed PMC
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). PubMed
Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023). PubMed PMC
Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021). PubMed PMC
Hatano, T. et al. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat. Commun. 13, 3398 (2022). PubMed PMC
Neveu, E., Khalifeh, D., Salamin, N. & Fasshauer, D. Prototypic SNARE proteins are encoded in the genomes of Heimdallarchaeota, potentially bridging the gap between the prokaryotes and eukaryotes. Curr. Biol. 30, 2468–2480.e5 (2020). PubMed
Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439–443 (2018). PubMed
Akıl, C. et al. Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Commun. Biol. 5, 890 (2022). PubMed PMC
Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023). PubMed
Survery, S. et al. Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun. Biol. 4, 1024 (2021). PubMed PMC
Akıl, C. et al. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Sci. Adv. 8, eabm2225 (2022). PubMed PMC
Donaldson, J. G. & Jackson, C. L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12, 362–375 (2011). PubMed PMC
Li, F.-L. & Guan, K.-L. The Arf family GTPases: regulation of vesicle biogenesis and beyond. Bioessays 45, 2200214 (2023).
Jackson, C. L., Ménétrey, J., Sivia, M., Dacks, J. B. & Eliáš, M. An evolutionary perspective on Arf family GTPases. Curr. Opin. Cell Biol. 85, 102268 (2023). PubMed
Sztul, E. et al. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol. Biol. Cell 30, 1249–1271 (2019). PubMed PMC
Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997). PubMed
Amor, J. C., Harrison, D. H., Kahn, R. A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994). PubMed
Gillingham, A. K. & Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007). PubMed
Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front–back’ communication. EMBO Rep. 3, 1035–1041 (2002). PubMed PMC
Greasley, S. E. et al. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nat. Struct. Biol. 2, 797–806 (1995). PubMed
Ménétrey, J., Macia, E., Pasqualato, S., Franco, M. & Cherfils, J. Structure of Arf6–GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat. Struct. Biol. 7, 466–469 (2000). PubMed
Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP–myristoyl switching. Cell 95, 237–248 (1998). PubMed
Pasqualato, S., Ménétrey, J., Franco, M. & Cherfils, J. The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2, 234–238 (2001). PubMed PMC
Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002). PubMed
Panic, B., Perisic, O., Veprintsev, D. B., Williams, R. L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the golgi apparatus. Mol. Cell 12, 863–874 (2003). PubMed
Mourão, A., Nager, A. R., Nachury, M. V. & Lorentzen, E. Structural basis for membrane targeting of the BBSome by ARL6. Nat. Struct. Mol. Biol. 21, 1035–1041 (2014). PubMed PMC
Lokaj, M. et al. The interaction of CCDC104/BARTL1 with Arl3 and implications for ciliary function. Structure 23, 2122–2132 (2015). PubMed PMC
Surkont, J. & Pereira-Leal, J. B. Are there Rab GTPases in archaea? Mol. Biol. Evol. 33, 1833–1842 (2016). PubMed PMC
Tran, L. T., Akıl, C., Senju, Y. & Robinson, R. C. The eukaryotic-like characteristics of small GTPase, roadblock and TRAPPC3 proteins from Asgard archaea. Commun. Biol. 7, 273 (2024). PubMed PMC
Homma, Y., Hiragi, S. & Fukuda, M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 288, 36–55 (2021). PubMed
Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. G. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33, 1528–1541 (2016). PubMed
Vargová, R. et al. A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol. Evol. 13, evab157 (2021). PubMed PMC
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017). PubMed
Jadhav, B., Wild, K., Pool, M. R. & Sinning, I. Structure and switch cycle of SRβ as ancestral eukaryotic GTPase associated with secretory membranes. Structure 23, 1838–1847 (2015). PubMed
Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895 (2012). PubMed
Vasudevan, C. et al. The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity. J. Cell Sci. 111, 1277–1285 (1998). PubMed
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020). PubMed PMC
Garten, M. et al. Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects. Phys. Chem. Chem. Phys. 17, 15589–15597 (2015). PubMed
Čopič, A. et al. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat. Commun. 9, 1332 (2018). PubMed PMC
Fleming, J. R., Dawson, A. & Hunter, W. N. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this kinetoplastid. Mol. Biochem. Parasitol. 174, 141–144 (2010). PubMed PMC
Mills, J. et al. Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase. Proc. Natl Acad. Sci. USA 121, e2311321121 (2024). PubMed PMC
Valentin-Alvarado, L. E. et al. Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements. Genome Res. 34, 1595–1609 (2024). PubMed PMC
Akıl, C. et al. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc. Natl Acad. Sci. USA 117, 19904–19913 (2020). PubMed PMC
Lu, Z. et al. Coevolution of eukaryote-like Vps4 and ESCRT-III subunits in the Asgard archaea. mBio 11, e00417-20 (2020). PubMed PMC
Nachmias, D. et al. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. ISME J. 17, 117–129 (2023). PubMed
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). PubMed PMC
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed PMC
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). PubMed
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). PubMed
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013). PubMed PMC
Mirarab, S. et al. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22, 377–386 (2015). PubMed PMC
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016). PubMed PMC
Marchler-Bauer, A. & Bryant, S. H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331 (2004). PubMed PMC
Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020). PubMed
Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases1. J. Mol. Biol. 317, 41–72 (2002). PubMed
Seitz, K. W., Lazar, C. S., Hinrichs, K.-U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016). PubMed PMC
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019). PubMed PMC
Cai, M. et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci. China Life Sci. 63, 886–897 (2020). PubMed
Farag, I. F., Zhao, R. & Biddle, J. F. ‘Sifarchaeota,’ a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl. Environ. Microbiol. 87, e02584-20 (2021).
Sun, J. et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 1, 30 (2021). PubMed PMC
Xie, R. et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 65, 818–829 (2022). PubMed
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010). PubMed PMC
Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat. Commun. 15, 6384 (2024). PubMed PMC
Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024). PubMed
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022). PubMed
Liu, R. et al. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. Environ. Microbiome 19, 43 (2024). PubMed PMC
Appler, K. E. et al. Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor. Preprint at bioRxiv https://doi.org/10.1101/2024.07.04.601786 (2024).
Eliáš, M., Brighouse, A., Gabernet-Castello, C., Field, M. C. & Dacks, J. B. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500–2508 (2012). PubMed PMC
Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021). PubMed
Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002). PubMed
Goodstadt, L. & Ponting, C. P. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17, 845–846 (2001). PubMed
Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004). PubMed
Gautier, R., Douguet, D., Antonny, B. & Drin, G. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24, 2101–2102 (2008). PubMed
Pranke, I. M. et al. α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J. Cell Biol. 194, 89–103 (2011). PubMed PMC
Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003). PubMed
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010). PubMed PMC
Tickle, I. J. et al. STARANISO (Global Phasing, 2018).
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011). PubMed PMC
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC
Kelley, L. A., Mezulis, S., Yates, C., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). PubMed PMC
Zhu, W., Shenoy, A., Kundrotas, P. & Elofsson, A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 39, btad424 (2023). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). PubMed PMC
Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D 64, 61–69 (2008). PubMed
Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999). PubMed
Bricogne G. et al. BUSTER Version 2.10.2 (Global Phasing, 2016).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). PubMed
DeLano, W. L. The PyMOL Molecular Graphics System Version 1.2 (Schrödinger, 2002).
Vargová, R. Arf family GTPases are present in Asgard archaea. figshare https://doi.org/10.6084/m9.figshare.26830264 (2024).